Skip to main content
Erschienen in: Rare Metals 5/2017

19.04.2017

A promising energy storage system: rechargeable Ni–Zn battery

verfasst von: Shi-Bin Lai, Mohammed-Ibrahim Jamesh, Xiao-Chao Wu, Ya-Lan Dong, Jun-Hao Wang, Maryann Gao, Jun-Feng Liu, Xiao-Ming Sun

Erschienen in: Rare Metals | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The sharp depletion of fossil fuel resources and its associated increasingly deteriorated environmental pollution are vital challenging energy issues, which are one of the most crucial research hot spots in the twenty-first century. Rechargeable Ni–Zn batteries (RNZBs), delivering high power density in aqueous electrolytes with stable cycle performance, are expected to be promising candidates to alleviate the current energy and environmental problems, and play an important role in green power sources. Many efforts have been focused on the investigations and improvements of RNZBs in recent decades, and it is necessary to summarize and review the achievements and challenges in this advancing field. In this paper, we review various batteries, compare and highlight the advantages of RNZBs, and introduce the recent advances in the development of electrode materials and electrolytes of RNZBs, especially the applications of novel nanostructured materials for the active electrodes. Some prospective investigation trends of RNZBs are also proposed and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev. 2005;105(3):1021.CrossRef Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev. 2005;105(3):1021.CrossRef
[2]
Zurück zum Zitat Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev. 2009;38(1):253.CrossRef Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev. 2009;38(1):253.CrossRef
[3]
Zurück zum Zitat Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci. 2011;4(9):3243.CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci. 2011;4(9):3243.CrossRef
[4]
Zurück zum Zitat Wang W, Tade MO, Shao ZP. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem Soc Rev. 2015;44(15):5371.CrossRef Wang W, Tade MO, Shao ZP. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem Soc Rev. 2015;44(15):5371.CrossRef
[5]
Zurück zum Zitat Lu L, Yang HX, Burnett J. Investigation on wind power potential on Hong Kong islands—an analysis of wind power and wind turbine characteristics. Renew Energy. 2002;27(1):1.CrossRef Lu L, Yang HX, Burnett J. Investigation on wind power potential on Hong Kong islands—an analysis of wind power and wind turbine characteristics. Renew Energy. 2002;27(1):1.CrossRef
[6]
Zurück zum Zitat Chow TT, Pei G, Fong KF, Lin Z, Chan ALS, He M. Modeling and application of direct-expansion solar-assisted heat pump for water heating in subtropical Hong Kong. Appl Energy. 2010;87(2):643.CrossRef Chow TT, Pei G, Fong KF, Lin Z, Chan ALS, He M. Modeling and application of direct-expansion solar-assisted heat pump for water heating in subtropical Hong Kong. Appl Energy. 2010;87(2):643.CrossRef
[7]
Zurück zum Zitat Nazeeruddin MK, Baranoff E, Gratzel M. Dye-sensitized solar cells: a brief overview. Sol Energy. 2011;85(6):1172.CrossRef Nazeeruddin MK, Baranoff E, Gratzel M. Dye-sensitized solar cells: a brief overview. Sol Energy. 2011;85(6):1172.CrossRef
[8]
Zurück zum Zitat Tachan Z, Ruhle S, Zaban A. Dye-sensitized solar tubes: a new solar cell design for efficient current collection and improved cell sealing. Sol Energy Mater Sol Cells. 2010;94(2):317.CrossRef Tachan Z, Ruhle S, Zaban A. Dye-sensitized solar tubes: a new solar cell design for efficient current collection and improved cell sealing. Sol Energy Mater Sol Cells. 2010;94(2):317.CrossRef
[9]
Zurück zum Zitat Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22(3):587.CrossRef Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22(3):587.CrossRef
[10]
Zurück zum Zitat Phillips J, Mohanta S, Geng M, Barton J, McKinney B, Wu J. Environmentally friendly nickel–zinc battery for high rate application with higher specific energy. ECS Trans. 2009;16(16):11.CrossRef Phillips J, Mohanta S, Geng M, Barton J, McKinney B, Wu J. Environmentally friendly nickel–zinc battery for high rate application with higher specific energy. ECS Trans. 2009;16(16):11.CrossRef
[11]
Zurück zum Zitat Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.CrossRef Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.CrossRef
[12]
Zurück zum Zitat Chau K, Wong Y, Chan C. An overview of energy sources for electric vehicles. Energy Convers Manag. 1999;40(10):1021.CrossRef Chau K, Wong Y, Chan C. An overview of energy sources for electric vehicles. Energy Convers Manag. 1999;40(10):1021.CrossRef
[13]
Zurück zum Zitat Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.CrossRef Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.CrossRef
[14]
Zurück zum Zitat Goodenough JB, Kim Y. Challenges for rechargeable batteries. J Power Sources. 2011;196(16):6688.CrossRef Goodenough JB, Kim Y. Challenges for rechargeable batteries. J Power Sources. 2011;196(16):6688.CrossRef
[15]
Zurück zum Zitat Cheng FY, Liang J, Tao ZL, Chen J. Functional materials for rechargeable batteries. Adv Mater. 2011;23(15):1695.CrossRef Cheng FY, Liang J, Tao ZL, Chen J. Functional materials for rechargeable batteries. Adv Mater. 2011;23(15):1695.CrossRef
[16]
Zurück zum Zitat Ding YL, Wen Y, Wu C, van Aken PA, Maier J, Yu Y. 3D V6O13 nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. Nano Lett. 2015;15(2):1388.CrossRef Ding YL, Wen Y, Wu C, van Aken PA, Maier J, Yu Y. 3D V6O13 nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. Nano Lett. 2015;15(2):1388.CrossRef
[17]
Zurück zum Zitat Liu S, Pan GL, Yan NF, Gao XP. Aqueous TiO2/Ni(OH)2 rechargeable battery with a high voltage based on proton and lithium insertion/extraction reactions. Energy Environ Sci. 2010;3(11):1732.CrossRef Liu S, Pan GL, Yan NF, Gao XP. Aqueous TiO2/Ni(OH)2 rechargeable battery with a high voltage based on proton and lithium insertion/extraction reactions. Energy Environ Sci. 2010;3(11):1732.CrossRef
[18]
Zurück zum Zitat Wang C, Wu L, Wang H, Zuo W, Li Y, Liu J. Fabrication and shell optimization of synergistic TiO2–MoO3 core–shell nanowire array anode for high energy and power density lithium-ion batteries. Adv Funct Mater. 2015;25(23):3524.CrossRef Wang C, Wu L, Wang H, Zuo W, Li Y, Liu J. Fabrication and shell optimization of synergistic TiO2–MoO3 core–shell nanowire array anode for high energy and power density lithium-ion batteries. Adv Funct Mater. 2015;25(23):3524.CrossRef
[19]
Zurück zum Zitat Fan X, Luo C, Lamb J, Zhu Y, Xu K, Wang C. PEDOT encapsulated FeOF nanorod cathodes for high energy lithium-ion batteries. Nano Lett. 2015;15(11):7650.CrossRef Fan X, Luo C, Lamb J, Zhu Y, Xu K, Wang C. PEDOT encapsulated FeOF nanorod cathodes for high energy lithium-ion batteries. Nano Lett. 2015;15(11):7650.CrossRef
[20]
Zurück zum Zitat Xie H, Du K, Hu G, Peng Z, Cao Y. The role of sodium in LiNi0.8Co0.15Al0.05O2 cathode material and its electrochemical behaviors. J Phys Chem C. 2016;120(6):3235.CrossRef Xie H, Du K, Hu G, Peng Z, Cao Y. The role of sodium in LiNi0.8Co0.15Al0.05O2 cathode material and its electrochemical behaviors. J Phys Chem C. 2016;120(6):3235.CrossRef
[21]
Zurück zum Zitat Zhu L, Liu Y, Wu W, Wu X, Tang W, Wu Y. Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries. J Mater Chem A. 2015;3(29):15156.CrossRef Zhu L, Liu Y, Wu W, Wu X, Tang W, Wu Y. Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries. J Mater Chem A. 2015;3(29):15156.CrossRef
[22]
Zurück zum Zitat Lee DU, Fu J, Park MG, Liu H, Kashkooli AG, Chen ZW. Self-assembled NiO/Ni(OH)2 nanoflakes as active material for high-power and high-energy hybrid rechargeable battery. Nano Lett. 2016;16(3):1794.CrossRef Lee DU, Fu J, Park MG, Liu H, Kashkooli AG, Chen ZW. Self-assembled NiO/Ni(OH)2 nanoflakes as active material for high-power and high-energy hybrid rechargeable battery. Nano Lett. 2016;16(3):1794.CrossRef
[23]
Zurück zum Zitat Wang H, Liang Y, Gong M, Li Y, Chang W, Mefford T, Zhou J, Wang J, Regier T, Wei F, Dai H. An ultrafast nickel-iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nat Commun. 2012;3(2):177. Wang H, Liang Y, Gong M, Li Y, Chang W, Mefford T, Zhou J, Wang J, Regier T, Wei F, Dai H. An ultrafast nickel-iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nat Commun. 2012;3(2):177.
[24]
Zurück zum Zitat Zeng Y, Lin Z, Meng Y, Wang Y, Yu M, Lu X, Tong Y. Flexible ultrafast aqueous rechargeable Ni//Bi battery based on highly durable single-crystalline bismuth nanostructured anode. Adv Mater. 2016;28(41):9188.CrossRef Zeng Y, Lin Z, Meng Y, Wang Y, Yu M, Lu X, Tong Y. Flexible ultrafast aqueous rechargeable Ni//Bi battery based on highly durable single-crystalline bismuth nanostructured anode. Adv Mater. 2016;28(41):9188.CrossRef
[25]
Zurück zum Zitat Tang W, Hou YY, Wang FX, Liu LL, Wu YP, Zhu K. LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries. Nano Lett. 2013;13(5):2036.CrossRef Tang W, Hou YY, Wang FX, Liu LL, Wu YP, Zhu K. LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries. Nano Lett. 2013;13(5):2036.CrossRef
[26]
Zurück zum Zitat Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller KT, Liu J. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature Energy. 2016;1(5):16039.CrossRef Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller KT, Liu J. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature Energy. 2016;1(5):16039.CrossRef
[27]
Zurück zum Zitat Manthiram A. Materials challenges and opportunities of lithium-ion batteries. J Phys Chem Lett. 2011;2(3):176.CrossRef Manthiram A. Materials challenges and opportunities of lithium-ion batteries. J Phys Chem Lett. 2011;2(3):176.CrossRef
[28]
Zurück zum Zitat Whittingham M. Lithium batteries and cathode materials. Chem Rev. 2004;104(10):4271.CrossRef Whittingham M. Lithium batteries and cathode materials. Chem Rev. 2004;104(10):4271.CrossRef
[29]
Zurück zum Zitat Zhu WH, Zhu Y, Davis Z, Tatarchuk BJ. Energy efficiency and capacity retention of Ni–MH batteries for storage applications. Appl Energy. 2013;106(11):307.CrossRef Zhu WH, Zhu Y, Davis Z, Tatarchuk BJ. Energy efficiency and capacity retention of Ni–MH batteries for storage applications. Appl Energy. 2013;106(11):307.CrossRef
[30]
Zurück zum Zitat Lu LG, Han XB, Li JQ, Hua JF, Ouyang MG. A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources. 2013;226(3):272.CrossRef Lu LG, Han XB, Li JQ, Hua JF, Ouyang MG. A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources. 2013;226(3):272.CrossRef
[31]
Zurück zum Zitat Wang HL, Cui LF, Yang YA, Casalongue HS, Robinson JT, Liang YY, Cui Y, Dai HJ. Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc. 2010;132(40):13978.CrossRef Wang HL, Cui LF, Yang YA, Casalongue HS, Robinson JT, Liang YY, Cui Y, Dai HJ. Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc. 2010;132(40):13978.CrossRef
[32]
Zurück zum Zitat Todd ADW, Ferguson PP, Fleischauer MD, Dahn JR. Tin-based materials as negative electrodes for Li-ion batteries: combinatorial approaches and mechanical methods. Int J Energy Res. 2010;34(6):535.CrossRef Todd ADW, Ferguson PP, Fleischauer MD, Dahn JR. Tin-based materials as negative electrodes for Li-ion batteries: combinatorial approaches and mechanical methods. Int J Energy Res. 2010;34(6):535.CrossRef
[33]
Zurück zum Zitat Song MK, Cairns EJ, Zhang Y. Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale. 2013;5(6):2186.CrossRef Song MK, Cairns EJ, Zhang Y. Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale. 2013;5(6):2186.CrossRef
[34]
Zurück zum Zitat Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium–sulfur batteries. Acc Chem Res. 2013;46(5):1125.CrossRef Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium–sulfur batteries. Acc Chem Res. 2013;46(5):1125.CrossRef
[35]
Zurück zum Zitat Choi YJ, Kim KW, Ahn HJ, Ahn JH. Improvement of cycle property of sulfur electrode for lithium/sulfur battery. J Alloys Compd. 2008;449(1–2):313.CrossRef Choi YJ, Kim KW, Ahn HJ, Ahn JH. Improvement of cycle property of sulfur electrode for lithium/sulfur battery. J Alloys Compd. 2008;449(1–2):313.CrossRef
[36]
Zurück zum Zitat Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT. Rechargeable lithium sulfur battery-I. Structural change of sulfur cathode during discharge and charge. J Electrochem Soc. 2003;150(6):A796.CrossRef Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT. Rechargeable lithium sulfur battery-I. Structural change of sulfur cathode during discharge and charge. J Electrochem Soc. 2003;150(6):A796.CrossRef
[37]
Zurück zum Zitat Ryu HS, Guo ZP, Ahn HJ, Cho GB, Liu HK. Investigation of discharge reaction mechanism of lithium vertical bar liquid electrolyte vertical bar sulfur battery. J Power Sources. 2009;189(2):1179.CrossRef Ryu HS, Guo ZP, Ahn HJ, Cho GB, Liu HK. Investigation of discharge reaction mechanism of lithium vertical bar liquid electrolyte vertical bar sulfur battery. J Power Sources. 2009;189(2):1179.CrossRef
[38]
Zurück zum Zitat Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li–O2 and Li–S batteries with high energy storage. Nat Mater. 2012;11(1):19.CrossRef Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li–O2 and Li–S batteries with high energy storage. Nat Mater. 2012;11(1):19.CrossRef
[39]
Zurück zum Zitat Ruggeri S, Roue L. Correlation between charge input and cycle life of MgNi electrode for Ni–MH batteries. J Power Sources. 2003;117(1–2):260.CrossRef Ruggeri S, Roue L. Correlation between charge input and cycle life of MgNi electrode for Ni–MH batteries. J Power Sources. 2003;117(1–2):260.CrossRef
[40]
Zurück zum Zitat Liu Y, Pan H, Gao M, Wang Q. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J Mater Chem. 2011;21(13):4743.CrossRef Liu Y, Pan H, Gao M, Wang Q. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J Mater Chem. 2011;21(13):4743.CrossRef
[41]
Zurück zum Zitat Feng F, Northwood DG. Effect of surface modification on the performance of negative electrodes in Ni/MH batteries. Int J Hydrogen Energy. 2004;29(9):955.CrossRef Feng F, Northwood DG. Effect of surface modification on the performance of negative electrodes in Ni/MH batteries. Int J Hydrogen Energy. 2004;29(9):955.CrossRef
[42]
Zurück zum Zitat Ruiz FC, Castro EB, Real SG, Peretti HA, Visintin A, Triaca WE. Electrochemical characterization of AB2 alloys used for negative electrodes in Ni/MH batteries. Int J Hydrogen Energy. 2008;33(13):3576.CrossRef Ruiz FC, Castro EB, Real SG, Peretti HA, Visintin A, Triaca WE. Electrochemical characterization of AB2 alloys used for negative electrodes in Ni/MH batteries. Int J Hydrogen Energy. 2008;33(13):3576.CrossRef
[43]
Zurück zum Zitat Feng F, Geng M, Northwood DO. Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review. Int J Hydrogen Energy. 2001;26(7):725.CrossRef Feng F, Geng M, Northwood DO. Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review. Int J Hydrogen Energy. 2001;26(7):725.CrossRef
[44]
Zurück zum Zitat Chan CC, Lo EWC, Shen W. The available capacity computation model based on artificial neural network for lead–acid batteries in electric vehicles. J Power Sources. 2000;87(1):201.CrossRef Chan CC, Lo EWC, Shen W. The available capacity computation model based on artificial neural network for lead–acid batteries in electric vehicles. J Power Sources. 2000;87(1):201.CrossRef
[45]
Zurück zum Zitat Zhang K, Liu W, Ma BB, Mezaal MA, Li GH, Zhang R, Lei LX. Lead sulfate used as the positive active material of lead acid batteries. J Solid State Electrochem. 2016;20(8):2267.CrossRef Zhang K, Liu W, Ma BB, Mezaal MA, Li GH, Zhang R, Lei LX. Lead sulfate used as the positive active material of lead acid batteries. J Solid State Electrochem. 2016;20(8):2267.CrossRef
[46]
Zurück zum Zitat Durr M, Cruden A, Gair S, McDonald JR. Dynamic model of a lead acid battery for use in a domestic fuel cell system. J Power Sources. 2006;161(2):1400.CrossRef Durr M, Cruden A, Gair S, McDonald JR. Dynamic model of a lead acid battery for use in a domestic fuel cell system. J Power Sources. 2006;161(2):1400.CrossRef
[47]
Zurück zum Zitat Coates D, Ferreira E, Charkey A. An improved nickel/zinc battery for ventricular assist systems. J Power Sources. 1997;65(1):109.CrossRef Coates D, Ferreira E, Charkey A. An improved nickel/zinc battery for ventricular assist systems. J Power Sources. 1997;65(1):109.CrossRef
[48]
Zurück zum Zitat Wang GJ, Fu LJ, Zhao NH, Yang LC, Wu YP, Wu HQ. An aqueous rechargeable lithium battery with good cycling performance. Angew Chem Int Ed. 2007;46(1–2):295.CrossRef Wang GJ, Fu LJ, Zhao NH, Yang LC, Wu YP, Wu HQ. An aqueous rechargeable lithium battery with good cycling performance. Angew Chem Int Ed. 2007;46(1–2):295.CrossRef
[49]
Zurück zum Zitat Liu J, Guan C, Zhou C, Fan Z, Ke Q, Zhang G, Liu C, Wang J. A flexible quasi-solid-state nickel–zinc battery with high energy and power densities based on 3D electrode design. Adv Mater. 2016;28(39):8732.CrossRef Liu J, Guan C, Zhou C, Fan Z, Ke Q, Zhang G, Liu C, Wang J. A flexible quasi-solid-state nickel–zinc battery with high energy and power densities based on 3D electrode design. Adv Mater. 2016;28(39):8732.CrossRef
[50]
Zurück zum Zitat Yang B, Yang ZH. Structure and improved electrochemical performance of a nanostructured layered double hydroxide-carbon nanotube composite as a novel anode material for Ni–Zn secondary batteries. RSC Adv. 2013;3(31):12589.CrossRef Yang B, Yang ZH. Structure and improved electrochemical performance of a nanostructured layered double hydroxide-carbon nanotube composite as a novel anode material for Ni–Zn secondary batteries. RSC Adv. 2013;3(31):12589.CrossRef
[51]
Zurück zum Zitat Yang JL, Yuan YF, Wu HM, Li Y, Chen YB, Guo SY. Preparation and electrochemical performances of ZnO nanowires as anode materials for Ni/Zn secondary battery. Electrochim Acta. 2010;55(23):7050.CrossRef Yang JL, Yuan YF, Wu HM, Li Y, Chen YB, Guo SY. Preparation and electrochemical performances of ZnO nanowires as anode materials for Ni/Zn secondary battery. Electrochim Acta. 2010;55(23):7050.CrossRef
[52]
Zurück zum Zitat Ma M, Tu JP, Yuan YF, Wang XL, Li KF, Mao F, Zeng ZY. Electrochemical performance of ZnO nanoplates as anode materials for Ni/Zn secondary batteries. J Power Sources. 2008;179(1):395.CrossRef Ma M, Tu JP, Yuan YF, Wang XL, Li KF, Mao F, Zeng ZY. Electrochemical performance of ZnO nanoplates as anode materials for Ni/Zn secondary batteries. J Power Sources. 2008;179(1):395.CrossRef
[53]
Zurück zum Zitat Yuan Y, Tu J, Wu H. Size and morphology effects of ZnO anode nanomaterials for Zn/Ni secondary batteries. Nanotechnology. 2005;16(6):803.CrossRef Yuan Y, Tu J, Wu H. Size and morphology effects of ZnO anode nanomaterials for Zn/Ni secondary batteries. Nanotechnology. 2005;16(6):803.CrossRef
[54]
Zurück zum Zitat Geng M, Northwood DO. Development of advanced rechargeable Ni/MH and Ni/Zn batteries. Int J Hydrogen Energy. 2003;28(6):633.CrossRef Geng M, Northwood DO. Development of advanced rechargeable Ni/MH and Ni/Zn batteries. Int J Hydrogen Energy. 2003;28(6):633.CrossRef
[55]
Zurück zum Zitat Xu C, Liao J, Yang C, Wang R, Wu D, Zou P, Lin Z, Li B, Kang F, Wong CP. An ultrafast, high capacity and superior longevity Ni/Zn battery constructed on nickel nanowire array film. Nano Energy. 2016;30:900.CrossRef Xu C, Liao J, Yang C, Wang R, Wu D, Zou P, Lin Z, Li B, Kang F, Wong CP. An ultrafast, high capacity and superior longevity Ni/Zn battery constructed on nickel nanowire array film. Nano Energy. 2016;30:900.CrossRef
[56]
Zurück zum Zitat Hu P, Wang T, Zhao J, Zhang C, Ma J, Du H, Wang X, Cui G. Ultrafast alkaline Ni/Zn battery based on Ni-foam-supported Ni3S2 nanosheets. ACS Appl Mater Interfaces. 2015;7(48):26396.CrossRef Hu P, Wang T, Zhao J, Zhang C, Ma J, Du H, Wang X, Cui G. Ultrafast alkaline Ni/Zn battery based on Ni-foam-supported Ni3S2 nanosheets. ACS Appl Mater Interfaces. 2015;7(48):26396.CrossRef
[57]
Zurück zum Zitat Fan XM, Yang ZH, Wen RJ, Yang B, Long W. The application of Zn–Al-hydrotalcite as a novel anodic material for Ni–Zn secondary cells. J Power Sources. 2013;224(4):80.CrossRef Fan XM, Yang ZH, Wen RJ, Yang B, Long W. The application of Zn–Al-hydrotalcite as a novel anodic material for Ni–Zn secondary cells. J Power Sources. 2013;224(4):80.CrossRef
[58]
Zurück zum Zitat Yang Q, Lu ZY, Liu JF, Lei XD, Chang Z, Luo L, Sun XM. Metal oxide and hydroxide nanoarrays: hydrothermal synthesis and applications as supercapacitors and nanocatalysts. Prog Nat Sci. 2013;23(4):351.CrossRef Yang Q, Lu ZY, Liu JF, Lei XD, Chang Z, Luo L, Sun XM. Metal oxide and hydroxide nanoarrays: hydrothermal synthesis and applications as supercapacitors and nanocatalysts. Prog Nat Sci. 2013;23(4):351.CrossRef
[59]
Zurück zum Zitat Yuan CZ, Wu HB, Xie Y, Lou XW. Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed. 2014;53(6):1488.CrossRef Yuan CZ, Wu HB, Xie Y, Lou XW. Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed. 2014;53(6):1488.CrossRef
[60]
Zurück zum Zitat Xu QS, Zhu YJ, Huang LG, Luo J, Zhang ZJ, Miao CC, Ye H. Phase and particle of Y-doped Ni(OH)2 prepared from different nickel sources and Na2CO3 amount. Rare Met. 2014;33(2):219.CrossRef Xu QS, Zhu YJ, Huang LG, Luo J, Zhang ZJ, Miao CC, Ye H. Phase and particle of Y-doped Ni(OH)2 prepared from different nickel sources and Na2CO3 amount. Rare Met. 2014;33(2):219.CrossRef
[61]
Zurück zum Zitat Kang S, Im Y, Park KS, Cho TW, Jeon J, Chung K, Kang M. The incorporation of Cr ions into the framework of ZnO for stable electrochemical performance in a membrane free alkaline Ni/Zn redox. Electrochim Acta. 2016;209:623.CrossRef Kang S, Im Y, Park KS, Cho TW, Jeon J, Chung K, Kang M. The incorporation of Cr ions into the framework of ZnO for stable electrochemical performance in a membrane free alkaline Ni/Zn redox. Electrochim Acta. 2016;209:623.CrossRef
[62]
Zurück zum Zitat Joshi RK, Schneider JJ. Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality. Chem Soc Rev. 2012;41(15):5285.CrossRef Joshi RK, Schneider JJ. Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality. Chem Soc Rev. 2012;41(15):5285.CrossRef
[63]
Zurück zum Zitat Wang GP, Zhang L, Zhang JJ. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012;41(2):797.CrossRef Wang GP, Zhang L, Zhang JJ. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012;41(2):797.CrossRef
[64]
Zurück zum Zitat Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol. 2008;3(1):31.CrossRef Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol. 2008;3(1):31.CrossRef
[65]
Zurück zum Zitat Cao MH, He XY, Chen J, Hu CW. Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries. Cryst Growth Des. 2007;7(1):170.CrossRef Cao MH, He XY, Chen J, Hu CW. Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries. Cryst Growth Des. 2007;7(1):170.CrossRef
[66]
Zurück zum Zitat Li YG, Dai HJ. Recent advances in zinc–air batteries. Chem Soc Rev. 2014;43(15):5257.CrossRef Li YG, Dai HJ. Recent advances in zinc–air batteries. Chem Soc Rev. 2014;43(15):5257.CrossRef
[67]
Zurück zum Zitat Yuan YF, Tu JP, Wu HM, Yang YZ, Shi DQ, Zhao XB. Electrochemical performance and morphology evolution of nanosized ZnO as anode material of Ni–Zn batteries. Electrochim Acta. 2006;51(18):3632.CrossRef Yuan YF, Tu JP, Wu HM, Yang YZ, Shi DQ, Zhao XB. Electrochemical performance and morphology evolution of nanosized ZnO as anode material of Ni–Zn batteries. Electrochim Acta. 2006;51(18):3632.CrossRef
[68]
Zurück zum Zitat Ghavami RK, Rafiei Z, Tabatabaei SM. Effects of cationic CTAB and anionic SDBS surfactants on the performance of Zn–MnO2 alkaline batteries. J Power Sources. 2007;164(2):934.CrossRef Ghavami RK, Rafiei Z, Tabatabaei SM. Effects of cationic CTAB and anionic SDBS surfactants on the performance of Zn–MnO2 alkaline batteries. J Power Sources. 2007;164(2):934.CrossRef
[69]
Zurück zum Zitat Lee JS, Kim ST, Cao R, Choi NS, Liu M, Lee KT, Cho J. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv Energy Mater. 2011;1(1):34.CrossRef Lee JS, Kim ST, Cao R, Choi NS, Liu M, Lee KT, Cho J. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv Energy Mater. 2011;1(1):34.CrossRef
[70]
Zurück zum Zitat Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ. Metallic anodes for next generation secondary batteries. Chem Soc Rev. 2013;42(23):9011.CrossRef Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ. Metallic anodes for next generation secondary batteries. Chem Soc Rev. 2013;42(23):9011.CrossRef
[71]
Zurück zum Zitat Yuan YF, Li Y, Tao S, Ye FC, Yang JL, Guo SY, Tu JP. Preparation and electrochemical performance of nanosized Bi compounds-modified ZnO for Zn/Ni secondary cell. Electrochim Acta. 2009;54(26):6617.CrossRef Yuan YF, Li Y, Tao S, Ye FC, Yang JL, Guo SY, Tu JP. Preparation and electrochemical performance of nanosized Bi compounds-modified ZnO for Zn/Ni secondary cell. Electrochim Acta. 2009;54(26):6617.CrossRef
[72]
Zurück zum Zitat Zheng Y, Wang JM, Chen H, Zhang JQ, Cao CN. Effects of barium on the performance of secondary alkaline zinc electrode. Mater Chem Phys. 2004;84(1):99.CrossRef Zheng Y, Wang JM, Chen H, Zhang JQ, Cao CN. Effects of barium on the performance of secondary alkaline zinc electrode. Mater Chem Phys. 2004;84(1):99.CrossRef
[73]
Zurück zum Zitat Yuan YF, Tu JP, Wu HM, Li Y, Shi DQ, Zhao XB. Effect of ZnO nanomaterials associated with Ca(OH)2 as anode material for Ni–Zn batteries. J Power Sources. 2006;159(1):357.CrossRef Yuan YF, Tu JP, Wu HM, Li Y, Shi DQ, Zhao XB. Effect of ZnO nanomaterials associated with Ca(OH)2 as anode material for Ni–Zn batteries. J Power Sources. 2006;159(1):357.CrossRef
[74]
Zurück zum Zitat Wang SW, Yang ZH, Zeng LH. Effect of surface modification with In(OH)3 on electrochemical performance of calcium zincate. J Electrochem Soc. 2008;156(1):A18.CrossRef Wang SW, Yang ZH, Zeng LH. Effect of surface modification with In(OH)3 on electrochemical performance of calcium zincate. J Electrochem Soc. 2008;156(1):A18.CrossRef
[75]
Zurück zum Zitat Huang J, Yang Z, Wang T. Evaluation of tetraphenylporphyrin modified ZnO as anode material for Ni–Zn rechargeable battery. Electrochim Acta. 2014;123(10):278. Huang J, Yang Z, Wang T. Evaluation of tetraphenylporphyrin modified ZnO as anode material for Ni–Zn rechargeable battery. Electrochim Acta. 2014;123(10):278.
[76]
Zurück zum Zitat Lee SM, Kim YJ, Eom SW, Choi NS, Kim KW, Cho SB. Improvement in self-discharge of Zn anode by applying surface modification for Zn–air batteries with high energy density. J Power Sources. 2013;227:177.CrossRef Lee SM, Kim YJ, Eom SW, Choi NS, Kim KW, Cho SB. Improvement in self-discharge of Zn anode by applying surface modification for Zn–air batteries with high energy density. J Power Sources. 2013;227:177.CrossRef
[77]
Zurück zum Zitat Yuan YF, Tu JP, Wu HM, Zhang CQ, Wang SF, Zhao XB. Influence of surface modification with Sn6O4(OH)4 on electrochemical performance of ZnO in Zn/Ni secondary cells. J Power Sources. 2007;165(2):905.CrossRef Yuan YF, Tu JP, Wu HM, Zhang CQ, Wang SF, Zhao XB. Influence of surface modification with Sn6O4(OH)4 on electrochemical performance of ZnO in Zn/Ni secondary cells. J Power Sources. 2007;165(2):905.CrossRef
[78]
Zurück zum Zitat Zeng D, Yang Z, Wang S, Ni X, Ai D, Zhang Q. Preparation and electrochemical performance of In-doped ZnO as anode material for Ni–Zn secondary cells. Electrochim Acta. 2011;56(11):4075.CrossRef Zeng D, Yang Z, Wang S, Ni X, Ai D, Zhang Q. Preparation and electrochemical performance of In-doped ZnO as anode material for Ni–Zn secondary cells. Electrochim Acta. 2011;56(11):4075.CrossRef
[79]
Zurück zum Zitat Yang B, Yang ZH, Wang RJ. Facile synthesis of novel two-dimensional silver-coated layered double hydroxide nanosheets as advanced anode material for Ni–Zn secondary batteries. J Power Sources. 2014;251:14.CrossRef Yang B, Yang ZH, Wang RJ. Facile synthesis of novel two-dimensional silver-coated layered double hydroxide nanosheets as advanced anode material for Ni–Zn secondary batteries. J Power Sources. 2014;251:14.CrossRef
[80]
Zurück zum Zitat Yang B, Yang Z, Wang R, Wang T. Layered double hydroxide/carbon nanotubes composite as a high performance anode material for Ni–Zn secondary batteries. Electrochim Acta. 2013;111(6):581.CrossRef Yang B, Yang Z, Wang R, Wang T. Layered double hydroxide/carbon nanotubes composite as a high performance anode material for Ni–Zn secondary batteries. Electrochim Acta. 2013;111(6):581.CrossRef
[81]
Zurück zum Zitat Fan XM, Yang ZH, Long W, Zhao ZY, Yang B. The preparation and electrochemical performance of In(OH)3-coated Zn–Al-hydrotalcite as anode material for Zn–Ni secondary cell. Electrochim Acta. 2013;92:365.CrossRef Fan XM, Yang ZH, Long W, Zhao ZY, Yang B. The preparation and electrochemical performance of In(OH)3-coated Zn–Al-hydrotalcite as anode material for Zn–Ni secondary cell. Electrochim Acta. 2013;92:365.CrossRef
[82]
Zurück zum Zitat Parker JF, Nelson ES, Wattendorf MD, Chervin CN, Long JW, Rolison DR. Retaining the 3D framework of zinc sponge anodes upon deep discharge in Zn–air cells. ACS Appl Mater Interfaces. 2014;6(22):19471.CrossRef Parker JF, Nelson ES, Wattendorf MD, Chervin CN, Long JW, Rolison DR. Retaining the 3D framework of zinc sponge anodes upon deep discharge in Zn–air cells. ACS Appl Mater Interfaces. 2014;6(22):19471.CrossRef
[83]
Zurück zum Zitat Wang RJ, Yang ZH, Yang B, Wang TT, Chu ZH. Superior cycle stability and high rate capability of Zn–Al–In-hydrotalcite as negative electrode materials for Ni–Zn secondary batteries. J Power Sources. 2014;251:344.CrossRef Wang RJ, Yang ZH, Yang B, Wang TT, Chu ZH. Superior cycle stability and high rate capability of Zn–Al–In-hydrotalcite as negative electrode materials for Ni–Zn secondary batteries. J Power Sources. 2014;251:344.CrossRef
[84]
Zurück zum Zitat Huang JH, Yang ZH, Wang RJ, Zhang Z, Feng ZB, Xie XE. Zn–Al layered double oxides as high-performance anode materials for zinc-based secondary battery. J Mater Chem A. 2015;3(14):7429.CrossRef Huang JH, Yang ZH, Wang RJ, Zhang Z, Feng ZB, Xie XE. Zn–Al layered double oxides as high-performance anode materials for zinc-based secondary battery. J Mater Chem A. 2015;3(14):7429.CrossRef
[85]
Zurück zum Zitat Wang TT, Yang ZH, Yang B, Wang RJ, Huang JH. The electrochemical performances of Zn–Sn–Al-hydrotalcites in Zn–Ni secondary cells. J Power Sources. 2014;257(3):174.CrossRef Wang TT, Yang ZH, Yang B, Wang RJ, Huang JH. The electrochemical performances of Zn–Sn–Al-hydrotalcites in Zn–Ni secondary cells. J Power Sources. 2014;257(3):174.CrossRef
[86]
Zurück zum Zitat Long J, Yang ZH, Zeng X, Huang JH. A new class of nanocomposites of Zn–Al–Bi layered double oxides: large reversible capacity and better cycle performance for alkaline secondary batteries. RSC Adv. 2016;6(95):92896.CrossRef Long J, Yang ZH, Zeng X, Huang JH. A new class of nanocomposites of Zn–Al–Bi layered double oxides: large reversible capacity and better cycle performance for alkaline secondary batteries. RSC Adv. 2016;6(95):92896.CrossRef
[87]
Zurück zum Zitat Wang R, Yang Z, Yang B, Fan X, Wang T. A novel alcohol-thermal synthesis method of calcium zincates negative electrode materials for Ni–Zn secondary batteries. J Power Sources. 2014;246(3):313.CrossRef Wang R, Yang Z, Yang B, Fan X, Wang T. A novel alcohol-thermal synthesis method of calcium zincates negative electrode materials for Ni–Zn secondary batteries. J Power Sources. 2014;246(3):313.CrossRef
[88]
Zurück zum Zitat Moser F, Fourgeot F, Rouget R, Crosnier O, Brousse T. In situ X-ray diffraction investigation of zinc based electrode in Ni–Zn secondary batteries. Electrochim Acta. 2013;109(11):110.CrossRef Moser F, Fourgeot F, Rouget R, Crosnier O, Brousse T. In situ X-ray diffraction investigation of zinc based electrode in Ni–Zn secondary batteries. Electrochim Acta. 2013;109(11):110.CrossRef
[89]
Zurück zum Zitat Lee SH, Yi CW, Kim K. Characteristics and electrochemical performance of the TiO2-coated ZnO anode for Ni–Zn secondary batteries. J Phys Chem C. 2011;115(5):2572.CrossRef Lee SH, Yi CW, Kim K. Characteristics and electrochemical performance of the TiO2-coated ZnO anode for Ni–Zn secondary batteries. J Phys Chem C. 2011;115(5):2572.CrossRef
[90]
Zurück zum Zitat Zhao T, Shangguan E, Li Y, Li J, Chang Z, Li Q, Yuan XZ, Wang H. Facile synthesis of high tap density ZnO microspheres as advanced anode material for alkaline nickel–zinc rechargeable batteries. Electrochim Acta. 2015;182:173.CrossRef Zhao T, Shangguan E, Li Y, Li J, Chang Z, Li Q, Yuan XZ, Wang H. Facile synthesis of high tap density ZnO microspheres as advanced anode material for alkaline nickel–zinc rechargeable batteries. Electrochim Acta. 2015;182:173.CrossRef
[91]
Zurück zum Zitat Hochbaum AI, Yang PD. Semiconductor nanowires for energy conversion. Chem Rev. 2010;110(1):527.CrossRef Hochbaum AI, Yang PD. Semiconductor nanowires for energy conversion. Chem Rev. 2010;110(1):527.CrossRef
[92]
Zurück zum Zitat Yang GW, Xu CL, Li HL. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem Commun. 2008;48:6537.CrossRef Yang GW, Xu CL, Li HL. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem Commun. 2008;48:6537.CrossRef
[93]
Zurück zum Zitat Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev. 2012;112(7):4124.CrossRef Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev. 2012;112(7):4124.CrossRef
[94]
Zurück zum Zitat Mureşan L, Maurin G, Oniciu L, Avram S. Effects of additives on zinc electrowinning from industrial waste products. Hydrometallurgy. 1996;40(3):335.CrossRef Mureşan L, Maurin G, Oniciu L, Avram S. Effects of additives on zinc electrowinning from industrial waste products. Hydrometallurgy. 1996;40(3):335.CrossRef
[95]
Zurück zum Zitat Gu P, Pascual R, Shirkhanzadeh M, Saimoto S, Scott J. The influence of Al substrate intermetallic precipitates on zinc electrodeposition. Hydrometallurgy. 1995;37(3):267.CrossRef Gu P, Pascual R, Shirkhanzadeh M, Saimoto S, Scott J. The influence of Al substrate intermetallic precipitates on zinc electrodeposition. Hydrometallurgy. 1995;37(3):267.CrossRef
[96]
Zurück zum Zitat Liu YZ, Yang ZH, Xie XE, Huang JH, Wen X. Layered double oxides nano-flakes derived from layered double hydroxides: preparation, properties and application in zinc/nickel secondary batteries. Electrochim Acta. 2015;185:190.CrossRef Liu YZ, Yang ZH, Xie XE, Huang JH, Wen X. Layered double oxides nano-flakes derived from layered double hydroxides: preparation, properties and application in zinc/nickel secondary batteries. Electrochim Acta. 2015;185:190.CrossRef
[97]
Zurück zum Zitat Shaigan N, Qu W, Takeda T. Morphology control of electrodeposited zinc from alkaline zincate solutions for rechargeable zinc air batteries. ECS Trans. 2010;28(32):35.CrossRef Shaigan N, Qu W, Takeda T. Morphology control of electrodeposited zinc from alkaline zincate solutions for rechargeable zinc air batteries. ECS Trans. 2010;28(32):35.CrossRef
[98]
Zurück zum Zitat Adler TC, McLarnon FR, Cairns EJ. Investigations of a new family of alkaline–fluoride–carbonate electrolytes for zinc/nickel oxide cells. Ind Eng Chem Res. 1998;37(8):3237.CrossRef Adler TC, McLarnon FR, Cairns EJ. Investigations of a new family of alkaline–fluoride–carbonate electrolytes for zinc/nickel oxide cells. Ind Eng Chem Res. 1998;37(8):3237.CrossRef
[99]
Zurück zum Zitat Mclarnon FR, Cairns EJ. The secondary alkaline zinc electrode. J Electrochem Soc. 1991;138(2):355.CrossRef Mclarnon FR, Cairns EJ. The secondary alkaline zinc electrode. J Electrochem Soc. 1991;138(2):355.CrossRef
[100]
Zurück zum Zitat Dzieciuch MA, Gupta N, Wroblowa HS. Rechargeable cells with modified MnO2 cathodes. J Electrochem Soc. 1988;135(10):2415.CrossRef Dzieciuch MA, Gupta N, Wroblowa HS. Rechargeable cells with modified MnO2 cathodes. J Electrochem Soc. 1988;135(10):2415.CrossRef
[101]
Zurück zum Zitat Lan CJ, Lee CY, Chin TS. Tetra-alkyl ammonium hydroxides as inhibitors of Zn dendrite in Zn-based secondary batteries. Electrochim Acta. 2007;52(17):5407.CrossRef Lan CJ, Lee CY, Chin TS. Tetra-alkyl ammonium hydroxides as inhibitors of Zn dendrite in Zn-based secondary batteries. Electrochim Acta. 2007;52(17):5407.CrossRef
[102]
Zurück zum Zitat Ein-Eli Y, Auinat M. The behavior of zinc metal in alkaline solution containing organic inhibitors. J Electrochem Soc. 2003;150(12):A1606.CrossRef Ein-Eli Y, Auinat M. The behavior of zinc metal in alkaline solution containing organic inhibitors. J Electrochem Soc. 2003;150(12):A1606.CrossRef
[103]
Zurück zum Zitat Banik SJ, Akolkar R. Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive. Electrochim Acta. 2015;179:475.CrossRef Banik SJ, Akolkar R. Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive. Electrochim Acta. 2015;179:475.CrossRef
[104]
Zurück zum Zitat Xu M, Ivey DG, Qu W, Xie Z. Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide. J Power Sources. 2015;274:1249.CrossRef Xu M, Ivey DG, Qu W, Xie Z. Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide. J Power Sources. 2015;274:1249.CrossRef
[105]
Zurück zum Zitat Banik SJ, Akolkar R. Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive. J Electrochem Soc. 2013;160(11):D519.CrossRef Banik SJ, Akolkar R. Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive. J Electrochem Soc. 2013;160(11):D519.CrossRef
[106]
Zurück zum Zitat Shivkumar R, Kalaignan GP, Vasudevan T. Effect of additives on zinc electrodes in alkaline battery systems. J Power Sources. 1995;55(1):53.CrossRef Shivkumar R, Kalaignan GP, Vasudevan T. Effect of additives on zinc electrodes in alkaline battery systems. J Power Sources. 1995;55(1):53.CrossRef
[107]
Zurück zum Zitat Hu CC, Chang CY. Anodic stripping of zinc deposits for aqueous batteries: effects of anions, additives, current densities, and plating modes. Mater Chem Phys. 2004;86(1):195.CrossRef Hu CC, Chang CY. Anodic stripping of zinc deposits for aqueous batteries: effects of anions, additives, current densities, and plating modes. Mater Chem Phys. 2004;86(1):195.CrossRef
[108]
Zurück zum Zitat Zhang XG. Secondary batteries-zinc systems. Zinc electrodes: overview. Encycl Electrochem Power Sources. 2009;15(7):454.CrossRef Zhang XG. Secondary batteries-zinc systems. Zinc electrodes: overview. Encycl Electrochem Power Sources. 2009;15(7):454.CrossRef
[109]
Zurück zum Zitat Cheng HH, Tan CS. Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed. J Power Sources. 2006;162(2):1431.CrossRef Cheng HH, Tan CS. Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed. J Power Sources. 2006;162(2):1431.CrossRef
[110]
Zurück zum Zitat Moon KM, Lee MH, Kim KJ, Park KW. The effect of additives on the corrosion resistance of Zn electrode in alkaline battery system. Met Mater Int. 2005;11(3):221.CrossRef Moon KM, Lee MH, Kim KJ, Park KW. The effect of additives on the corrosion resistance of Zn electrode in alkaline battery system. Met Mater Int. 2005;11(3):221.CrossRef
[111]
Zurück zum Zitat Li LF. Non-toxic alkaline electrolyte with additives for rechargeable zinc cells. US patent. 201000623327.2010. Li LF. Non-toxic alkaline electrolyte with additives for rechargeable zinc cells. US patent. 201000623327.2010.
[112]
Zurück zum Zitat Lee CW, Sathiyanarayanan K, Eom SW, Kim HS, Yun MS. Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives. J Power Sources. 2006;159(2):1474.CrossRef Lee CW, Sathiyanarayanan K, Eom SW, Kim HS, Yun MS. Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives. J Power Sources. 2006;159(2):1474.CrossRef
[113]
Zurück zum Zitat Aaboubi O, Douglade J, Abenaqui X, Boumedmed R, VonHoff J. Influence of tartaric acid on zinc electrodeposition from sulphate bath. Electrochim Acta. 2011;56(23):7885.CrossRef Aaboubi O, Douglade J, Abenaqui X, Boumedmed R, VonHoff J. Influence of tartaric acid on zinc electrodeposition from sulphate bath. Electrochim Acta. 2011;56(23):7885.CrossRef
[114]
Zurück zum Zitat Mainar AR, Leonet O, Bengoechea M, Boyano I, Meatza I, Kvasha A, Guerfi A, Blazquez JA. Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview. Int J Energy Res. 2016;40(8):1032.CrossRef Mainar AR, Leonet O, Bengoechea M, Boyano I, Meatza I, Kvasha A, Guerfi A, Blazquez JA. Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview. Int J Energy Res. 2016;40(8):1032.CrossRef
[115]
Zurück zum Zitat Liu Z, Cui T, Pulletikurthi G, Lahiri A, Carstens T, Olschewski M, Endres F. Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries. Angew Chem Int Ed. 2016;55(8):2889.CrossRef Liu Z, Cui T, Pulletikurthi G, Lahiri A, Carstens T, Olschewski M, Endres F. Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries. Angew Chem Int Ed. 2016;55(8):2889.CrossRef
[116]
Zurück zum Zitat Jorné J, Adler TC, Cairns EJ. Visual observations of early shape changes in a zinc/nickel oxide cell. J Electrochem Soc. 1995;142(3):771.CrossRef Jorné J, Adler TC, Cairns EJ. Visual observations of early shape changes in a zinc/nickel oxide cell. J Electrochem Soc. 1995;142(3):771.CrossRef
[117]
Zurück zum Zitat Mohamad AA, Mohamed NS, Yahya MZA, Othman R, Ramesh S, Alias Y, Arof AK. Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel–zinc cells. Solid State Ionics. 2003;156(1–2):171.CrossRef Mohamad AA, Mohamed NS, Yahya MZA, Othman R, Ramesh S, Alias Y, Arof AK. Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel–zinc cells. Solid State Ionics. 2003;156(1–2):171.CrossRef
[118]
Zurück zum Zitat Iwakura C, Murakami H, Nohara S, Furukawa N, Inoue H. Charge–discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte. J Power Sources. 2005;152(1):291.CrossRef Iwakura C, Murakami H, Nohara S, Furukawa N, Inoue H. Charge–discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte. J Power Sources. 2005;152(1):291.CrossRef
[119]
Zurück zum Zitat Shao MF, Zhang RK, Li ZH, Wei M, Evans DG, Duan X. Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. Chem Commun. 2015;51(88):15880.CrossRef Shao MF, Zhang RK, Li ZH, Wei M, Evans DG, Duan X. Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. Chem Commun. 2015;51(88):15880.CrossRef
[120]
Zurück zum Zitat He WX, Zhang YQ, Liang QQ, Jiang WQ, Sun HF. Hydrothermal synthesis and characterization of nano-petal nickel hydroxide. Rare Met. 2015;34(9):667.CrossRef He WX, Zhang YQ, Liang QQ, Jiang WQ, Sun HF. Hydrothermal synthesis and characterization of nano-petal nickel hydroxide. Rare Met. 2015;34(9):667.CrossRef
[121]
Zurück zum Zitat Watanabe K, Kikuoka T, Kumagai N. Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries. J Appl Electrochem. 1995;25(3):219.CrossRef Watanabe K, Kikuoka T, Kumagai N. Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries. J Appl Electrochem. 1995;25(3):219.CrossRef
[122]
Zurück zum Zitat He XM, Pu WH, Cheng HW, Jiang CY, Wan CR. Granulation of nano-scale Ni(OH)2 cathode materials for high power Ni–MH batteries. Energy Convers Manag. 2006;47(13):1879.CrossRef He XM, Pu WH, Cheng HW, Jiang CY, Wan CR. Granulation of nano-scale Ni(OH)2 cathode materials for high power Ni–MH batteries. Energy Convers Manag. 2006;47(13):1879.CrossRef
[123]
Zurück zum Zitat Jayashree RS, Kamath PV. Layered double hydroxides of Ni with Cr and Mn as candidate electrode materials for alkaline secondary cells. J Power Sources. 2002;107(1):120.CrossRef Jayashree RS, Kamath PV. Layered double hydroxides of Ni with Cr and Mn as candidate electrode materials for alkaline secondary cells. J Power Sources. 2002;107(1):120.CrossRef
[124]
Zurück zum Zitat Gong M, Li Y, Zhang H, Zhang B, Zhou W, Feng J, Wang H, Liang Y, Fan Z, Liu J, Dai H. Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy Environ Sci. 2014;7(6):2025.CrossRef Gong M, Li Y, Zhang H, Zhang B, Zhou W, Feng J, Wang H, Liang Y, Fan Z, Liu J, Dai H. Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy Environ Sci. 2014;7(6):2025.CrossRef
[125]
Zurück zum Zitat Zhi MJ, Xiang CC, Li JT, Li M, Wu NQ. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale. 2013;5(1):72.CrossRef Zhi MJ, Xiang CC, Li JT, Li M, Wu NQ. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale. 2013;5(1):72.CrossRef
[126]
Zurück zum Zitat Yu GH, Xie X, Pan LJ, Bao ZN, Cui Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy. 2013;2(2):213.CrossRef Yu GH, Xie X, Pan LJ, Bao ZN, Cui Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy. 2013;2(2):213.CrossRef
[127]
Zurück zum Zitat Guan C, Liu JP, Cheng CW, Li HX, Li XL, Zhou WW, Zhang H, Fan HJ. Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy Environ Sci. 2011;4(11):4496.CrossRef Guan C, Liu JP, Cheng CW, Li HX, Li XL, Zhou WW, Zhang H, Fan HJ. Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy Environ Sci. 2011;4(11):4496.CrossRef
[128]
Zurück zum Zitat Zhou WJ, Cao XH, Zeng ZY, Shi WH, Zhu YY, Yan QY, Liu H, Wang JY, Zhang H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core-shell nanostructures on three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci. 2013;6(7):2216.CrossRef Zhou WJ, Cao XH, Zeng ZY, Shi WH, Zhu YY, Yan QY, Liu H, Wang JY, Zhang H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core-shell nanostructures on three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci. 2013;6(7):2216.CrossRef
[129]
Zurück zum Zitat Lai XY, Halpert JE, Wang D. Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ Sci. 2012;5(2):5604.CrossRef Lai XY, Halpert JE, Wang D. Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ Sci. 2012;5(2):5604.CrossRef
[130]
Zurück zum Zitat Cao HQ, Zheng H, Liu KY, Warner JH. Bioinspired peony-like β-Ni(OH)2 nanostructures with enhanced electrochemical activity and superhydrophobicity. ChemPhysChem. 2010;11(2):489.CrossRef Cao HQ, Zheng H, Liu KY, Warner JH. Bioinspired peony-like β-Ni(OH)2 nanostructures with enhanced electrochemical activity and superhydrophobicity. ChemPhysChem. 2010;11(2):489.CrossRef
[131]
Zurück zum Zitat Zhang WK, Xia XH, Huang H, Gan YP, Wu JB, Tu JP. High-rate discharge properties of nickel hydroxide/carbon composite as positive electrode for Ni/MH batteries. J Power Sources. 2008;184(2):646.CrossRef Zhang WK, Xia XH, Huang H, Gan YP, Wu JB, Tu JP. High-rate discharge properties of nickel hydroxide/carbon composite as positive electrode for Ni/MH batteries. J Power Sources. 2008;184(2):646.CrossRef
[132]
Zurück zum Zitat Lu ZY, Wu XC, Lei XD, Li YP, Sun XM. Hierarchical nanoarray materials for advanced nickel–zinc batteries. Inorg Chem Front. 2015;2(2):184.CrossRef Lu ZY, Wu XC, Lei XD, Li YP, Sun XM. Hierarchical nanoarray materials for advanced nickel–zinc batteries. Inorg Chem Front. 2015;2(2):184.CrossRef
[133]
Zurück zum Zitat Yun YH, Dong ZG, Shanov VN, Schulz MJ. Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel. Nanotechnology. 2007;18(46):5721.CrossRef Yun YH, Dong ZG, Shanov VN, Schulz MJ. Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel. Nanotechnology. 2007;18(46):5721.CrossRef
[134]
Zurück zum Zitat Liu F, Piao Y, Choi KS, Seo TS. Fabrication of free-standing graphene composite films as electrochemical biosensors. Carbon. 2012;50(1):123.CrossRef Liu F, Piao Y, Choi KS, Seo TS. Fabrication of free-standing graphene composite films as electrochemical biosensors. Carbon. 2012;50(1):123.CrossRef
[135]
Zurück zum Zitat Sheng QL, Wang MZ, Zheng JB. A novel hydrogen peroxide biosensor based on enzymatically induced deposition of polyaniline on the functionalized graphene–carbon nanotube hybrid materials. Sens Actuators B Chem. 2011;160(1):1070.CrossRef Sheng QL, Wang MZ, Zheng JB. A novel hydrogen peroxide biosensor based on enzymatically induced deposition of polyaniline on the functionalized graphene–carbon nanotube hybrid materials. Sens Actuators B Chem. 2011;160(1):1070.CrossRef
[136]
Zurück zum Zitat Liu J, Chen M, Zhang L, Jiang J, Yan J, Huang Y, Lin J, Fan HJ, Shen ZX. A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film. Nano Lett. 2014;14(12):7180.CrossRef Liu J, Chen M, Zhang L, Jiang J, Yan J, Huang Y, Lin J, Fan HJ, Shen ZX. A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film. Nano Lett. 2014;14(12):7180.CrossRef
Metadaten
Titel
A promising energy storage system: rechargeable Ni–Zn battery
verfasst von
Shi-Bin Lai
Mohammed-Ibrahim Jamesh
Xiao-Chao Wu
Ya-Lan Dong
Jun-Hao Wang
Maryann Gao
Jun-Feng Liu
Xiao-Ming Sun
Publikationsdatum
19.04.2017
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2017
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-017-0905-x

Weitere Artikel der Ausgabe 5/2017

Rare Metals 5/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.