Skip to main content


Weitere Artikel dieser Ausgabe durch Wischen aufrufen

26.10.2019 | Original Paper | Ausgabe 2/2020 Open Access

Computational Mechanics 2/2020

A Proper Generalized Decomposition (PGD) approach to crack propagation in brittle materials: with application to random field material properties

Computational Mechanics > Ausgabe 2/2020
Hasini Garikapati, Sergio Zlotnik, Pedro Díez, Clemens V. Verhoosel, E. Harald van Brummelen
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Understanding the failure of brittle heterogeneous materials is essential in many applications. Heterogeneities in material properties are frequently modeled through random fields, which typically induces the need to solve finite element problems for a large number of realizations. In this context, we make use of reduced order modeling to solve these problems at an affordable computational cost. This paper proposes a reduced order modeling framework to predict crack propagation in brittle materials with random heterogeneities. The framework is based on a combination of the Proper Generalized Decomposition (PGD) method with Griffith’s global energy criterion. The PGD framework provides an explicit parametric solution for the physical response of the system. We illustrate that a non-intrusive sampling-based technique can be applied as a post-processing operation on the explicit solution provided by PGD. We first validate the framework using a global energy approach on a deterministic two-dimensional linear elastic fracture mechanics benchmark. Subsequently, we apply the reduced order modeling approach to a stochastic fracture propagation problem.

Unsere Produktempfehlungen

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Über diesen Artikel

Weitere Artikel der Ausgabe 2/2020

Computational Mechanics 2/2020 Zur Ausgabe