Skip to main content
Erschienen in:

16.06.2024

A Proportionate Maximum Total Complex Correntropy Algorithm for Sparse Systems

verfasst von: Sifan Huang, Junzhu Liu, Guobing Qian, Xin Wang

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 10/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

While the practical application of adaptive filters has indeed garnered substantial attention, two pressing issues persist that have a profound impact on their performance—system sparsity and the presence of contaminated Gaussian impulsive noise. In this research paper, we propose a novel approach to tackle both of these issues simultaneously by introducing the concept of a proportionate matrix. Specifically, we present a proportionate maximum total complex correntropy algorithm based on the errors-in-variables model. The paper presents a theoretical analysis of the steady-state weight error power under the influence of impulsive noise. Furthermore, it discusses the performance comparison in system identification and highlights the robustness of the proposed algorithm. To validate its effectiveness, a simulation involving stereophonic acoustic echo cancellation is conducted, and the results confirm the clear advantages of the proposed Proportionate Maximum Total Complex Correntropy algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat J. Benesty, S.L. Gay, in ICASSP IEEE Int. Conf. Acoust. Speech Signal Process. Proc. An improved PNLMS algorithm (2002), pp. II-1881–II-1884 J. Benesty, S.L. Gay, in ICASSP IEEE Int. Conf. Acoust. Speech Signal Process. Proc. An improved PNLMS algorithm (2002), pp. II-1881–II-1884
2.
Zurück zum Zitat N.J. Bershad, On error saturation nonlinearities for LMS adaptation in impulsive noise. IEEE Trans. Signal Process. 56(9), 4526–4530 (2008)MathSciNetCrossRef N.J. Bershad, On error saturation nonlinearities for LMS adaptation in impulsive noise. IEEE Trans. Signal Process. 56(9), 4526–4530 (2008)MathSciNetCrossRef
3.
Zurück zum Zitat S. Burra, A. Kar, Performance analysis of an improved split functional link adaptive filtering algorithm for nonlinear AEC. Appl. Acoust. 176, 107863 (2021)CrossRef S. Burra, A. Kar, Performance analysis of an improved split functional link adaptive filtering algorithm for nonlinear AEC. Appl. Acoust. 176, 107863 (2021)CrossRef
4.
Zurück zum Zitat B. Chen, L. Dang, Y. Gu, N. Zheng, J.C. Príncipe, Minimum error entropy Kalman filter. IEEE Trans. Syst. Man Cybern. Syst. 51(9), 5819–5829 (2021)CrossRef B. Chen, L. Dang, Y. Gu, N. Zheng, J.C. Príncipe, Minimum error entropy Kalman filter. IEEE Trans. Syst. Man Cybern. Syst. 51(9), 5819–5829 (2021)CrossRef
5.
Zurück zum Zitat B. Chen, L. Xing, B. Xu, H. Zhao, J.C. Príncipe, Insights Into the robustness of minimum error entropy estimation. IEEE Trans. Neural Networks Learn. Sys. 29(3), 731–737 (2018)MathSciNetCrossRef B. Chen, L. Xing, B. Xu, H. Zhao, J.C. Príncipe, Insights Into the robustness of minimum error entropy estimation. IEEE Trans. Neural Networks Learn. Sys. 29(3), 731–737 (2018)MathSciNetCrossRef
6.
Zurück zum Zitat B. Chen, L. Xing, H. Zhao, S. Du, J.C. Príncipe, Effects of outliers on the maximum correntropy estimation: a robustness analysis. IEEE Trans. Syst. Man Cybern. Syst. 51(6), 4007–4012 (2021)CrossRef B. Chen, L. Xing, H. Zhao, S. Du, J.C. Príncipe, Effects of outliers on the maximum correntropy estimation: a robustness analysis. IEEE Trans. Syst. Man Cybern. Syst. 51(6), 4007–4012 (2021)CrossRef
7.
Zurück zum Zitat R.L. Das, M. Chakraborty, Improving the performance of the PNLMS algorithm using l1 norm regularization. IEEE Trans. Audio Speech Lang. Process. 24(7), 1280–1290 (2016)CrossRef R.L. Das, M. Chakraborty, Improving the performance of the PNLMS algorithm using l1 norm regularization. IEEE Trans. Audio Speech Lang. Process. 24(7), 1280–1290 (2016)CrossRef
8.
Zurück zum Zitat H. Deng, M. Doroslovacki, Improving convergence of the PNLMS algorithm for sparse impulse response identification. IEEE Signal Process. Lett. 12(3), 181–184 (2005)CrossRef H. Deng, M. Doroslovacki, Improving convergence of the PNLMS algorithm for sparse impulse response identification. IEEE Signal Process. Lett. 12(3), 181–184 (2005)CrossRef
9.
Zurück zum Zitat D.L. Duttweiler, Proportionate normalized least-mean-squares adaptation in echo cancelers. IEEE Trans. Speech. Audio Process. 8(5), 508–518 (2000)CrossRef D.L. Duttweiler, Proportionate normalized least-mean-squares adaptation in echo cancelers. IEEE Trans. Speech. Audio Process. 8(5), 508–518 (2000)CrossRef
10.
Zurück zum Zitat B. Farhang-Boroujeny, Adaptive Filters: Theory and Applications (John Wiley & Sons, Hoboken, 2013)CrossRef B. Farhang-Boroujeny, Adaptive Filters: Theory and Applications (John Wiley & Sons, Hoboken, 2013)CrossRef
11.
Zurück zum Zitat J. Ghibaudo, M. Aucejo, O. De Smet, A Sparse adaptive Bayesian filter for input estimation problems. Mech. Syst. Signal Process. 180, 109416 (2022)CrossRef J. Ghibaudo, M. Aucejo, O. De Smet, A Sparse adaptive Bayesian filter for input estimation problems. Mech. Syst. Signal Process. 180, 109416 (2022)CrossRef
12.
Zurück zum Zitat J.P.F. Guimarães, A.I.R. Fontes, J.B.A. Rego, A.M. de Martins, J.C. Príncipe, Complex correntropy: probabilistic interpretation and application to complex-valued data. IEEE Signal Process. Lett. 24(1), 42–45 (2017)CrossRef J.P.F. Guimarães, A.I.R. Fontes, J.B.A. Rego, A.M. de Martins, J.C. Príncipe, Complex correntropy: probabilistic interpretation and application to complex-valued data. IEEE Signal Process. Lett. 24(1), 42–45 (2017)CrossRef
13.
Zurück zum Zitat S. Haykin, Adaptive Filter Theory, 4th edn. (Prentice-Hall, Upper Saddle River, 2002) S. Haykin, Adaptive Filter Theory, 4th edn. (Prentice-Hall, Upper Saddle River, 2002)
14.
Zurück zum Zitat Z. Huang, G. Gui, A. Huang, D. Xiang and F. Adachi, in Asia-Pac. Conf. Commun., APCC. Regularization selection method for LMS-type sparse multipath channel estimation (2013), pp. 649–654 Z. Huang, G. Gui, A. Huang, D. Xiang and F. Adachi, in Asia-Pac. Conf. Commun., APCC. Regularization selection method for LMS-type sparse multipath channel estimation (2013), pp. 649–654
15.
Zurück zum Zitat Z. Huang, Y. Yu, R.C. de Lamare, Y. Fan, K. Li, Proportionate M-estimate adaptive filtering algorithms: insights and improvements. Signal Process. 200, 108671 (2022)CrossRef Z. Huang, Y. Yu, R.C. de Lamare, Y. Fan, K. Li, Proportionate M-estimate adaptive filtering algorithms: insights and improvements. Signal Process. 200, 108671 (2022)CrossRef
16.
Zurück zum Zitat L. Li, H. Zhao, A robust total least mean M-estimate adaptive algorithm for impulsive noise suppression. IEEE Trans. Circuits Syst. II, Exp. Briefs 67(4), 800–804 (2020)MathSciNet L. Li, H. Zhao, A robust total least mean M-estimate adaptive algorithm for impulsive noise suppression. IEEE Trans. Circuits Syst. II, Exp. Briefs 67(4), 800–804 (2020)MathSciNet
17.
Zurück zum Zitat D. Liu, H. Zhao, Bias-compensated sign subband adaptive filtering algorithm with individual-weighting-factors: performance analysis and improvement. Digital Signal Process. 136, 103981 (2023)CrossRef D. Liu, H. Zhao, Bias-compensated sign subband adaptive filtering algorithm with individual-weighting-factors: performance analysis and improvement. Digital Signal Process. 136, 103981 (2023)CrossRef
18.
Zurück zum Zitat L. Lu, H. Zhao, Active impulsive noise control using maximum correntropy with adaptive kernel size. Mech. Syst. Signal Process. 87, 180–191 (2017)CrossRef L. Lu, H. Zhao, Active impulsive noise control using maximum correntropy with adaptive kernel size. Mech. Syst. Signal Process. 87, 180–191 (2017)CrossRef
19.
Zurück zum Zitat S. Lv, H. Zhao, L. Zhou, Robust proportionate normalized least mean M-estimate algorithm for block-sparse system identification. IEEE Trans. Circuits Syst. II, Exp. Briefs 69(1), 234–238 (2022) S. Lv, H. Zhao, L. Zhou, Robust proportionate normalized least mean M-estimate algorithm for block-sparse system identification. IEEE Trans. Circuits Syst. II, Exp. Briefs 69(1), 234–238 (2022)
20.
Zurück zum Zitat W. Ma, B. Chen, J. Duan, H. Zhao, Diffusion maximum correntropy criterion algorithms for robust distributed estimation. Digital Signal Process. 58, 10–19 (2016)CrossRef W. Ma, B. Chen, J. Duan, H. Zhao, Diffusion maximum correntropy criterion algorithms for robust distributed estimation. Digital Signal Process. 58, 10–19 (2016)CrossRef
21.
Zurück zum Zitat W. Ma, J. Duan, W. Man, H. Zhao, B. Chen, Robust kernel adaptive filters based on mean p-power error for noisy chaotic time series prediction. Eng. Appl. Artif. Intell. 58, 101–110 (2017)CrossRef W. Ma, J. Duan, W. Man, H. Zhao, B. Chen, Robust kernel adaptive filters based on mean p-power error for noisy chaotic time series prediction. Eng. Appl. Artif. Intell. 58, 101–110 (2017)CrossRef
22.
Zurück zum Zitat D. Mandic, V. Goh, Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models. Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control (Wiley, Hoboken, 2009) D. Mandic, V. Goh, Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models. Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control (Wiley, Hoboken, 2009)
23.
Zurück zum Zitat S. Nan, G. Qian, Univariate kernel sums correntropy for adaptive filtering. Appl. Acoust. 184, 108316 (2021)CrossRef S. Nan, G. Qian, Univariate kernel sums correntropy for adaptive filtering. Appl. Acoust. 184, 108316 (2021)CrossRef
24.
Zurück zum Zitat C. Paleologu, S. Ciochina, J. Benesty, An efficient proportionate affine projection algorithm for echo cancellation. IEEE Signal Process. Lett. 17(2), 165–168 (2010)CrossRef C. Paleologu, S. Ciochina, J. Benesty, An efficient proportionate affine projection algorithm for echo cancellation. IEEE Signal Process. Lett. 17(2), 165–168 (2010)CrossRef
25.
Zurück zum Zitat S. Peng, W. Ser, B. Chen, L. Sun, Z. Lin, Robust nonnegative matrix factorization with local coordinate constraint for image clustering. Eng. Appl. Artif. Intell. 88, 103354 (2020)CrossRef S. Peng, W. Ser, B. Chen, L. Sun, Z. Lin, Robust nonnegative matrix factorization with local coordinate constraint for image clustering. Eng. Appl. Artif. Intell. 88, 103354 (2020)CrossRef
26.
Zurück zum Zitat F.L. Perez, C.A. Pitz, R. Seara, A two-gain NLMS algorithm for sparse system identification. Signal Process. 200, 108636 (2022)CrossRef F.L. Perez, C.A. Pitz, R. Seara, A two-gain NLMS algorithm for sparse system identification. Signal Process. 200, 108636 (2022)CrossRef
27.
Zurück zum Zitat G. Qian, H.H.C. Iu, S. Wang, Complex shannon entropy based learning algorithm and its applications. IEEE Trans. Veh. Technol. 70(10), 9673–9684 (2021)CrossRef G. Qian, H.H.C. Iu, S. Wang, Complex shannon entropy based learning algorithm and its applications. IEEE Trans. Veh. Technol. 70(10), 9673–9684 (2021)CrossRef
28.
Zurück zum Zitat G. Qian, J. Mei, H.H.C. Iu, S. Wang, Fixed-point maximum total complex correntropy algorithm for adaptive filter. IEEE Trans. Signal Process. 69, 2188–2202 (2021)MathSciNetCrossRef G. Qian, J. Mei, H.H.C. Iu, S. Wang, Fixed-point maximum total complex correntropy algorithm for adaptive filter. IEEE Trans. Signal Process. 69, 2188–2202 (2021)MathSciNetCrossRef
29.
Zurück zum Zitat G. Qian, S. Wang, H.H.C. Iu, Maximum total complex correntropy for adaptive filter. IEEE Trans. Signal Process. 68, 978–989 (2020)MathSciNetCrossRef G. Qian, S. Wang, H.H.C. Iu, Maximum total complex correntropy for adaptive filter. IEEE Trans. Signal Process. 68, 978–989 (2020)MathSciNetCrossRef
30.
Zurück zum Zitat Z. Qin, J. Tao, Y. Xia, A proportionate recursive least squares algorithm and its performance analysis. IEEE Trans. Circuits Syst. II, Exp. Briefs 68(1), 506–510 (2021) Z. Qin, J. Tao, Y. Xia, A proportionate recursive least squares algorithm and its performance analysis. IEEE Trans. Circuits Syst. II, Exp. Briefs 68(1), 506–510 (2021)
31.
Zurück zum Zitat Z. Qin, J. Tao, Y. Xia, L. Yang, Proportionate RLS with l1 norm regularization: performance analysis and fast implementation. Digital Signal Process. Rev. J. 122, 103366 (2022)CrossRef Z. Qin, J. Tao, Y. Xia, L. Yang, Proportionate RLS with l1 norm regularization: performance analysis and fast implementation. Digital Signal Process. Rev. J. 122, 103366 (2022)CrossRef
32.
Zurück zum Zitat T. Shen, W. Ren, M. Han, Quantized generalized maximum correntropy criterion based kernel recursive least squares for online time series prediction. Eng. Appl. Artif. Intell. 95, 103797 (2020)CrossRef T. Shen, W. Ren, M. Han, Quantized generalized maximum correntropy criterion based kernel recursive least squares for online time series prediction. Eng. Appl. Artif. Intell. 95, 103797 (2020)CrossRef
33.
Zurück zum Zitat L. Shi, H. Zhao, Y. Zakharov, B. Chen, Y. Yang, Variable step-size widely linear complex-valued affine projection algorithm and performance analysis. IEEE Trans. Signal Process. 68, 5940–5953 (2020)MathSciNetCrossRef L. Shi, H. Zhao, Y. Zakharov, B. Chen, Y. Yang, Variable step-size widely linear complex-valued affine projection algorithm and performance analysis. IEEE Trans. Signal Process. 68, 5940–5953 (2020)MathSciNetCrossRef
34.
Zurück zum Zitat S. Vettori, E. Di Lorenzo, B. Peeters, M.M. Luczak, E. Chatzi, An adaptive-noise Augmented Kalman filter approach for input-state estimation in structural dynamics. Mech. Syst. Signal Process. 184, 109654 (2023)CrossRef S. Vettori, E. Di Lorenzo, B. Peeters, M.M. Luczak, E. Chatzi, An adaptive-noise Augmented Kalman filter approach for input-state estimation in structural dynamics. Mech. Syst. Signal Process. 184, 109654 (2023)CrossRef
35.
Zurück zum Zitat D. Wang, J. Liu, S. Sun, C. Shen, B. Hou, T. Yan, Z. Peng, Investigations on the sensitivity of sparsity measures to the sparsity of impulsive signals. Mech. Syst. Signal Process. 178, 109315 (2022)CrossRef D. Wang, J. Liu, S. Sun, C. Shen, B. Hou, T. Yan, Z. Peng, Investigations on the sensitivity of sparsity measures to the sparsity of impulsive signals. Mech. Syst. Signal Process. 178, 109315 (2022)CrossRef
36.
Zurück zum Zitat Y. Wang, Z. Qin, J. Tao, F. Tong and Y. Qiao, in Oceans Conf. Rec. IEEE. Sparse Adaptive Channel Estimation based on l0-PRLS Algorithm for Underwater Acoustic Communications (2022), pp. 1–5 Y. Wang, Z. Qin, J. Tao, F. Tong and Y. Qiao, in Oceans Conf. Rec. IEEE. Sparse Adaptive Channel Estimation based on l0-PRLS Algorithm for Underwater Acoustic Communications (2022), pp. 1–5
37.
Zurück zum Zitat Y. Wang, Z. Qin, J. Tao and L. Yang, in Proc. IEEE Sens. Array Multichannel Signal Proces. Workshop. Performance Analysis of PRLS-based Time-Varying Sparse System Identification (2022), pp. 251–255 Y. Wang, Z. Qin, J. Tao and L. Yang, in Proc. IEEE Sens. Array Multichannel Signal Proces. Workshop. Performance Analysis of PRLS-based Time-Varying Sparse System Identification (2022), pp. 251–255
38.
Zurück zum Zitat Y. Yu, H. He, T. Yang, X. Wang, R.C. de Lamare, Diffusion normalized least mean M-estimate algorithms: design and performance analysis. IEEE Trans. Signal Process. 68, 2199–2214 (2020)MathSciNetCrossRef Y. Yu, H. He, T. Yang, X. Wang, R.C. de Lamare, Diffusion normalized least mean M-estimate algorithms: design and performance analysis. IEEE Trans. Signal Process. 68, 2199–2214 (2020)MathSciNetCrossRef
39.
Zurück zum Zitat S. Zhang, J. Zhang, W.X. Zheng, H.C. So, Widely linear complex-valued estimated-input LMS algorithm for bias-compensated adaptive filtering with noisy measurements. IEEE Trans. Signal Process. 67(13), 3592–3605 (2019)MathSciNetCrossRef S. Zhang, J. Zhang, W.X. Zheng, H.C. So, Widely linear complex-valued estimated-input LMS algorithm for bias-compensated adaptive filtering with noisy measurements. IEEE Trans. Signal Process. 67(13), 3592–3605 (2019)MathSciNetCrossRef
40.
Zurück zum Zitat H. Zhao, Y. Chen, S. Lv, Robust diffusion total least mean M-estimate adaptive filtering algorithm and its performance analysis. IEEE Trans. Circuits Syst. II, Exp. Briefs 69(2), 654–658 (2022) H. Zhao, Y. Chen, S. Lv, Robust diffusion total least mean M-estimate adaptive filtering algorithm and its performance analysis. IEEE Trans. Circuits Syst. II, Exp. Briefs 69(2), 654–658 (2022)
41.
Zurück zum Zitat H. Zhao, B. Tian, Robust power system forecasting-aided state estimation with generalized maximum mixture correntropy unscented Kalman filter. IEEE Trans. Instrum. Meas. 71, 1–10 (2022) H. Zhao, B. Tian, Robust power system forecasting-aided state estimation with generalized maximum mixture correntropy unscented Kalman filter. IEEE Trans. Instrum. Meas. 71, 1–10 (2022)
42.
Zurück zum Zitat Z. Zheng, Z. Liu, Y. Dong, Steady-state and tracking analyses of the improved proportionate affine projection algorithm. IEEE Trans. Circuits Syst. II, Exp. Briefs 65(11), 1793–1797 (2018) Z. Zheng, Z. Liu, Y. Dong, Steady-state and tracking analyses of the improved proportionate affine projection algorithm. IEEE Trans. Circuits Syst. II, Exp. Briefs 65(11), 1793–1797 (2018)
43.
Zurück zum Zitat Z. Zheng, Z. Liu, H. Zhao, Y. Yu, L. Lu, Robust set-membership normalized subband adaptive filtering algorithms and their application to acoustic echo cancellation. IEEE Trans. Circuits Syst. I, Reg. Papers 64(8), 2098–2111 (2017)CrossRef Z. Zheng, Z. Liu, H. Zhao, Y. Yu, L. Lu, Robust set-membership normalized subband adaptive filtering algorithms and their application to acoustic echo cancellation. IEEE Trans. Circuits Syst. I, Reg. Papers 64(8), 2098–2111 (2017)CrossRef
44.
Zurück zum Zitat Y. Zong, J. Ni, Variable step-size sparsity-induced augmented complex-valued NLMS algorithm. Circ. Syst. Signal Process 40, 4686–4695 (2021)CrossRef Y. Zong, J. Ni, Variable step-size sparsity-induced augmented complex-valued NLMS algorithm. Circ. Syst. Signal Process 40, 4686–4695 (2021)CrossRef
Metadaten
Titel
A Proportionate Maximum Total Complex Correntropy Algorithm for Sparse Systems
verfasst von
Sifan Huang
Junzhu Liu
Guobing Qian
Xin Wang
Publikationsdatum
16.06.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 10/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02752-9