Skip to main content
Erschienen in: Calcolo 1/2022

01.03.2022

A proximal point like method for solving tensor least-squares problems

verfasst von: Maolin Liang, Bing Zheng, Yutao Zheng

Erschienen in: Calcolo | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The goal of this paper is to solve the tensor least-squares (TLS) problem associated with multilinear system \(\mathcal {A}{} \mathbf{x} ^{m-1}=\mathbf{b}\), where \(\mathcal {A}\) is an mth-order n-dimensional tensor and \(\mathbf{b}\) is a vector in \(\mathbb {R}^{n}\), which has practical applications in numerical PDEs, data mining, tensor complementary problems, higher order statistics and so on. We transform the TLS problem into a multi-block optimization problem with consensus constraints, and propose an alternating linearized method with proximal regularization for it. Under some mild assumptions, it is shown that every limit point of the sequence generated by this method is a stationary point. Moreover, when the tensor \(\mathcal {A}\) can be constructed in the tensor-train format explicitly, the total number of operations with respect to the method mentioned above decreases from the order of \(\mathcal {O}(n^{m-1})\) to \(\mathcal {O}((m-1)^2nr^2)+\mathcal {O}(mnr^3)\), alleviating the curse-of-dimensionality. As an application, the inverse iteration methods, derived from the proposed methods, for solving the tensor eigenvalue problems are presented. Some numerical examples are provided to illustrate the feasibility of our algorithms.
Fußnoten
1
Generally, we can not conclude that the two suquences are convergent, although \(\Vert \widetilde{\mathbf{x }}^{(k)}-\widetilde{\mathbf{x }}^{(k+1)}\Vert ^2 \ge \Vert \widetilde{\mathbf{x }}^{(k)}-\overline{\overline{\mathbf{x }}}\,^{(k)}\Vert ^2\). A couterexample is \(x_i^{(k)}=1+\dfrac{1}{2}+\cdots +\dfrac{1}{k}\) in the sense that \(n=1\) and \(i=2,3,\ldots ,m\).
 
Literatur
2.
Zurück zum Zitat Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)MATH Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)MATH
4.
Zurück zum Zitat Lim, L.-H.: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the 1st IEEE International Workshop on Computational Advances of Multi-sensor Adaptive Processing (CAMSAP), pp. 129–132 (2005) Lim, L.-H.: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the 1st IEEE International Workshop on Computational Advances of Multi-sensor Adaptive Processing (CAMSAP), pp. 129–132 (2005)
5.
Zurück zum Zitat Ding, W.-Y., Qi, L.-Q., Wei, Y.-M.: \(\cal{M}\)-tensors and nonsingular \(\cal{M}\)-tensors. Linear Algebra Appl. 439(10), 3264–3278 (2013)MathSciNetCrossRef Ding, W.-Y., Qi, L.-Q., Wei, Y.-M.: \(\cal{M}\)-tensors and nonsingular \(\cal{M}\)-tensors. Linear Algebra Appl. 439(10), 3264–3278 (2013)MathSciNetCrossRef
6.
Zurück zum Zitat Zhang, L.-P., Qi, L.-Q., Zhou, G.-L.: \(\cal{M}\)-tensors and some applications. SIAM J. Matrix Anal. Appl. 35(2), 437–452 (2014)MathSciNetCrossRef Zhang, L.-P., Qi, L.-Q., Zhou, G.-L.: \(\cal{M}\)-tensors and some applications. SIAM J. Matrix Anal. Appl. 35(2), 437–452 (2014)MathSciNetCrossRef
7.
Zurück zum Zitat Li, X.-T., Ng, M.K.: Solving sparse non-negative tensor equations: algorithms and applications. Front. Math. China 10(3), 649–680 (2015)MathSciNetCrossRef Li, X.-T., Ng, M.K.: Solving sparse non-negative tensor equations: algorithms and applications. Front. Math. China 10(3), 649–680 (2015)MathSciNetCrossRef
8.
Zurück zum Zitat Ding, W.-Y., Wei, Y.-M.: Solving multi-linear systems with \(\cal{M}\)-tensors. J. Sci. Comput. 68(2), 689–715 (2016)MathSciNetCrossRef Ding, W.-Y., Wei, Y.-M.: Solving multi-linear systems with \(\cal{M}\)-tensors. J. Sci. Comput. 68(2), 689–715 (2016)MathSciNetCrossRef
9.
Zurück zum Zitat Luo, Z.-Y., Qi, L.-Q., Xiu, N.-H.: The sparsest solutions to Z-tensor complementarity problems. Optim. Lett. 11, 471–482 (2017)MathSciNetCrossRef Luo, Z.-Y., Qi, L.-Q., Xiu, N.-H.: The sparsest solutions to Z-tensor complementarity problems. Optim. Lett. 11, 471–482 (2017)MathSciNetCrossRef
10.
Zurück zum Zitat Elden, L., Ahmadi-Asl, S.: Solving bilinear tensor least squares problems. In: Report on the Sixth International Conference on Numerical Algebra and Scientific Computing (NASC 2016), Zhejiang University, Hangzhou, P.R. China (2016) Elden, L., Ahmadi-Asl, S.: Solving bilinear tensor least squares problems. In: Report on the Sixth International Conference on Numerical Algebra and Scientific Computing (NASC 2016), Zhejiang University, Hangzhou, P.R. China (2016)
11.
Zurück zum Zitat Azimzadeh, P., Bayraktar, E.: High order Bellman equations and weakly chained diagonally dominant tensors. SIAM J. Matrix Anal. Appl. 40(1), 276–298 (2019)MathSciNetCrossRef Azimzadeh, P., Bayraktar, E.: High order Bellman equations and weakly chained diagonally dominant tensors. SIAM J. Matrix Anal. Appl. 40(1), 276–298 (2019)MathSciNetCrossRef
12.
Zurück zum Zitat Schnabel, R.B., Frank, P.D.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal. 21(5), 815–843 (1984)MathSciNetCrossRef Schnabel, R.B., Frank, P.D.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal. 21(5), 815–843 (1984)MathSciNetCrossRef
13.
Zurück zum Zitat Bouaricha, A.: Tensor methods for large, sparse unconstrained optimization. SIAM J. Optim. 7(3), 732–756 (1997)MathSciNetCrossRef Bouaricha, A.: Tensor methods for large, sparse unconstrained optimization. SIAM J. Optim. 7(3), 732–756 (1997)MathSciNetCrossRef
14.
Zurück zum Zitat Han, L.-X.: A homotopy method for solving multilinear systems with \(\cal{M}\)-tensors. Appl. Math. Lett. 69, 49–54 (2017)MathSciNetCrossRef Han, L.-X.: A homotopy method for solving multilinear systems with \(\cal{M}\)-tensors. Appl. Math. Lett. 69, 49–54 (2017)MathSciNetCrossRef
15.
Zurück zum Zitat Li, D.-H., Xie, S.-L., Xu, H.-R.: Splitting methods for tensor equations. Numer. Linear Algebra. 24, e2102 (2017)MathSciNetCrossRef Li, D.-H., Xie, S.-L., Xu, H.-R.: Splitting methods for tensor equations. Numer. Linear Algebra. 24, e2102 (2017)MathSciNetCrossRef
16.
Zurück zum Zitat Xie, Z.-J., Jin, X.-Q., Wei, Y.-M.: Tensor methods for solving symmetric M-tensor systems. J. Sci. Comput. 74, 412–425 (2018)MathSciNetCrossRef Xie, Z.-J., Jin, X.-Q., Wei, Y.-M.: Tensor methods for solving symmetric M-tensor systems. J. Sci. Comput. 74, 412–425 (2018)MathSciNetCrossRef
17.
Zurück zum Zitat Xie, Z.-J., Jin, X.-Q., Wei, Y.-M.: A fast algorithm for solving circulant tensor systems. Linear Multilinear Algebra 65(9), 1894–1904 (2017)MathSciNetCrossRef Xie, Z.-J., Jin, X.-Q., Wei, Y.-M.: A fast algorithm for solving circulant tensor systems. Linear Multilinear Algebra 65(9), 1894–1904 (2017)MathSciNetCrossRef
18.
Zurück zum Zitat Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)MathSciNetCrossRef Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)MathSciNetCrossRef
19.
Zurück zum Zitat Kiers, H.: Towards a standardized notation and terminology in multiway analysis. J. Chemometr. 14, 105–122 (2000)CrossRef Kiers, H.: Towards a standardized notation and terminology in multiway analysis. J. Chemometr. 14, 105–122 (2000)CrossRef
20.
22.
Zurück zum Zitat Silva, V.D., Lim, L.H.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30(3), 1084–1127 (2008)MathSciNetCrossRef Silva, V.D., Lim, L.H.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30(3), 1084–1127 (2008)MathSciNetCrossRef
23.
Zurück zum Zitat Hackbusch, W., Kuhn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706–722 (2009)MathSciNetCrossRef Hackbusch, W., Kuhn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706–722 (2009)MathSciNetCrossRef
24.
Zurück zum Zitat Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31(4), 2029–2054 (2010)MathSciNetCrossRef Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31(4), 2029–2054 (2010)MathSciNetCrossRef
25.
Zurück zum Zitat Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31(5), 3744–3759 (2009)MathSciNetCrossRef Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31(5), 3744–3759 (2009)MathSciNetCrossRef
26.
Zurück zum Zitat Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36(1), 53–78 (2013)MathSciNetCrossRef Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36(1), 53–78 (2013)MathSciNetCrossRef
27.
Zurück zum Zitat Oseledets, I.V.: Compact matrix form of the d-dimensional tensor decomposition. Preprint 2009-01, INM RAS, Moscow (2009) Oseledets, I.V.: Compact matrix form of the d-dimensional tensor decomposition. Preprint 2009-01, INM RAS, Moscow (2009)
28.
Zurück zum Zitat Wang, X.-F., Navasca, C.: Low rank approximation of tensors via sparse optimization. Numer. Linear Algebra Appl. 25, e2136 (2018)MathSciNetCrossRef Wang, X.-F., Navasca, C.: Low rank approximation of tensors via sparse optimization. Numer. Linear Algebra Appl. 25, e2136 (2018)MathSciNetCrossRef
29.
Zurück zum Zitat Karim, R.G., Guo, G.-M., Yan, D., Navasca, C.: Accurate tensor decomposition with simultaneous rank approximation for surveillance videos. In: The 54th IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove (2020) Karim, R.G., Guo, G.-M., Yan, D., Navasca, C.: Accurate tensor decomposition with simultaneous rank approximation for surveillance videos. In: The 54th IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove (2020)
30.
Zurück zum Zitat Hong, D., Kolda, T..G., Duersch, J..A.: Generalized canonical polyadic tensor decomposition. SIAM Rev. 62(1), 133–163 (2020)MathSciNetCrossRef Hong, D., Kolda, T..G., Duersch, J..A.: Generalized canonical polyadic tensor decomposition. SIAM Rev. 62(1), 133–163 (2020)MathSciNetCrossRef
31.
Zurück zum Zitat Ng, M.K., Qi, L.-Q., Zhou, G.-L.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31(3), 1090–1099 (2009)MathSciNetCrossRef Ng, M.K., Qi, L.-Q., Zhou, G.-L.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31(3), 1090–1099 (2009)MathSciNetCrossRef
32.
Zurück zum Zitat Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011)MathSciNetCrossRef Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011)MathSciNetCrossRef
33.
Zurück zum Zitat Cui, C.-F., Dai, Y.-H., Nie, J.-W.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35(4), 1582–1601 (2014)MathSciNetCrossRef Cui, C.-F., Dai, Y.-H., Nie, J.-W.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35(4), 1582–1601 (2014)MathSciNetCrossRef
34.
Zurück zum Zitat Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)MATH Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)MATH
35.
Zurück zum Zitat Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss–Seidel method under convex constraints. Oper. Res. Lett. 26, 127–136 (2000)MathSciNetCrossRef Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss–Seidel method under convex constraints. Oper. Res. Lett. 26, 127–136 (2000)MathSciNetCrossRef
36.
Zurück zum Zitat Comon, P., Luciani, X., De Almeida, A.L.F.: Tensor decompositions, alternating least squares and other tales. J. Chemometrics 23, 393–405 (2009)CrossRef Comon, P., Luciani, X., De Almeida, A.L.F.: Tensor decompositions, alternating least squares and other tales. J. Chemometrics 23, 393–405 (2009)CrossRef
37.
Zurück zum Zitat Aitken, A.C.: The evaluation of the latent roots and latent vectors of a matrix. Proc. R. Soc. Edinb. 57, 269–304 (1937)CrossRef Aitken, A.C.: The evaluation of the latent roots and latent vectors of a matrix. Proc. R. Soc. Edinb. 57, 269–304 (1937)CrossRef
38.
Zurück zum Zitat Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(\(1/k^2\)). Soviet. Math. Dokl. 27, 372–376 (1983)MATH Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(\(1/k^2\)). Soviet. Math. Dokl. 27, 372–376 (1983)MATH
39.
Zurück zum Zitat Matsuno, Y.: Exact solutions for the nonlinear Klein–Gordon and Liouville equations in four-dimensional Euclidean space. J. Math. Phys. 28(10), 2317–2322 (1987)MathSciNetCrossRef Matsuno, Y.: Exact solutions for the nonlinear Klein–Gordon and Liouville equations in four-dimensional Euclidean space. J. Math. Phys. 28(10), 2317–2322 (1987)MathSciNetCrossRef
40.
Zurück zum Zitat Zwillinger, D.: Handbook of Differential Equations, 3rd edn. Academic Press Inc, Boston (1997)MATH Zwillinger, D.: Handbook of Differential Equations, 3rd edn. Academic Press Inc, Boston (1997)MATH
41.
Zurück zum Zitat Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)MathSciNetCrossRef Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)MathSciNetCrossRef
Metadaten
Titel
A proximal point like method for solving tensor least-squares problems
verfasst von
Maolin Liang
Bing Zheng
Yutao Zheng
Publikationsdatum
01.03.2022
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 1/2022
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-021-00450-5

Weitere Artikel der Ausgabe 1/2022

Calcolo 1/2022 Zur Ausgabe