Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

09.07.2016 | Methodologies and Application | Ausgabe 23/2017

Soft Computing 23/2017

A PSO algorithm for multi-objective cost-sensitive attribute reduction on numeric data with error ranges

Zeitschrift:
Soft Computing > Ausgabe 23/2017
Autoren:
Yu Fang, Zhong-Hui Liu, Fan Min
Wichtige Hinweise
Communicated by V. Loia.

Abstract

Multi-objective cost-sensitive attribute reduction is an attractive problem in supervised machine learning. Most research has focused on single-objective minimal test cost reduction or dealt with symbolic data. In this paper, we propose a particle swarm optimization algorithm for the attribute reduction problem on numeric data with multiple costs and error ranges and use three metrics with which to evaluate the performance of the algorithm. The proposed algorithm benefits from a fitness function based on the positive region, the selected n types of the test cost, a set of constant weight values \(w_{i}^k\), and a designated non-positive exponent \(\lambda \). We design a learning strategy by setting dominance principles, which ensures the preservation of Pareto-optimal solutions and the rejection of redundant solutions. With different parameter settings, our PSO algorithm searches for a sub-optimal reduct set. Finally, we test our algorithm on seven UCI (University of California, Irvine) datasets. Comparisons with alternative approaches including the \(\lambda \)-weighted method and exhaustive calculation method of reduction are analyzed. Experimental results indicate that our heuristic algorithm outperforms existing algorithms.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 23/2017

Soft Computing 23/2017 Zur Ausgabe

Premium Partner

    Bildnachweise