Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Telecommunication Systems 4/2021

14.09.2021

A QoS aware optimal node deployment in wireless sensor network using Grey wolf optimization approach for IoT applications

verfasst von: Kavita Jaiswal, Veena Anand

Erschienen in: Telecommunication Systems | Ausgabe 4/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The growth of Wireless Sensor Networks (WSN) becomes the backbone of all smart IoT applications. Deploying reliable WSNs is particularly significant for critical Internet of Things (IoT) applications, such as health monitoring, industrial and military applications. In such applications, the WSN’s inability to perform its necessary tasks and degrading QoS can have profound consequences and can not be tolerated. Thus, deploying reliable WSNs to achieve better Quality of Service (QoS) support is a relatively new topic gaining more interest. Consequently, deploying a large number of nodes while simultaneously optimizing various measures is regarded as an NP-hard problem. In this paper, a Grey wolf-based optimization technique is used for node deployment that guarantees a given set of QoS metrics, namely maximizing coverage, connectivity and minimizing the overall cost of the network. The aim is to find the optimum number of appropriate positions for sensor nodes deployment under various p-coverage and q-connectivity configurations. The proposed approach offers an efficient wolf representation scheme and formulates a novel multi-objective fitness function. A rigorous simulation and statistical analysis are performed to prove the proposed scheme’s efficiency. Also, a comparative analysis is being carried with existing state-of-the-art algorithms, namely PSO, GA, and Greedy approach, and the efficiency of the proposed method improved by more than 11%, 14%, and 20%, respectively, in selecting appropriate positions with desired coverage and connectivity.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literatur
1.
Zurück zum Zitat Salameh, H., Dhainat, M., & Benkhelifa, E. (2019). A survey on wireless sensor network-based IoT designs for gas leakage detection and fire-fighting applications. Jordanian Journal of Computers and Information Technology, 5(2), 60–72. Salameh, H., Dhainat, M., & Benkhelifa, E. (2019). A survey on wireless sensor network-based IoT designs for gas leakage detection and fire-fighting applications. Jordanian Journal of Computers and Information Technology, 5(2), 60–72.
2.
Zurück zum Zitat Zoghi, M., & Kahaei, M. (2012). Sensor management under tracking accuracy and energy constraints in wireless sensor networks. Arabian Journal for Science and Engineering, 37(3), 721–734. CrossRef Zoghi, M., & Kahaei, M. (2012). Sensor management under tracking accuracy and energy constraints in wireless sensor networks. Arabian Journal for Science and Engineering, 37(3), 721–734. CrossRef
3.
Zurück zum Zitat Abidin, H. Z., Din, N. M., Yassin, I., Omar, H., Radzi, N. A. M., & Sadon, S. (2014). Sensor node placement in wireless sensor network using multi-objective territorial predator scent marking algorithm. Arabian Journal for Science and Engineering, 39(8), 6317–6325. CrossRef Abidin, H. Z., Din, N. M., Yassin, I., Omar, H., Radzi, N. A. M., & Sadon, S. (2014). Sensor node placement in wireless sensor network using multi-objective territorial predator scent marking algorithm. Arabian Journal for Science and Engineering, 39(8), 6317–6325. CrossRef
4.
Zurück zum Zitat Bouzid, S., Seresstou, Y., Raoof, K., Omri, M., Mbarki, M., & Dridi, C. (2020). Moonga: Multi-objective optimization of wireless network approach based on genetic algorithm. IEEE Access, 8, 105793–105814. CrossRef Bouzid, S., Seresstou, Y., Raoof, K., Omri, M., Mbarki, M., & Dridi, C. (2020). Moonga: Multi-objective optimization of wireless network approach based on genetic algorithm. IEEE Access, 8, 105793–105814. CrossRef
5.
Zurück zum Zitat Kumar, D., Aseri, T. C., & Patel, R. (2009). Eehc: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Computer Communications, 32(4), 662–667. CrossRef Kumar, D., Aseri, T. C., & Patel, R. (2009). Eehc: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Computer Communications, 32(4), 662–667. CrossRef
6.
Zurück zum Zitat Gupta, S. K., Kuila, P., & Jana, P. K. (2016). Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks. Computers & Electrical Engineering, 56, 544–556. CrossRef Gupta, S. K., Kuila, P., & Jana, P. K. (2016). Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks. Computers & Electrical Engineering, 56, 544–556. CrossRef
7.
Zurück zum Zitat Prasanth, A., & Jayachitra, S. (2020). A novel multi-objective optimization strategy for enhancing quality of service in IoT-enabled WSN applications. Peer-to-Peer Networking and Applications, 13(6), 1905–1920. CrossRef Prasanth, A., & Jayachitra, S. (2020). A novel multi-objective optimization strategy for enhancing quality of service in IoT-enabled WSN applications. Peer-to-Peer Networking and Applications, 13(6), 1905–1920. CrossRef
8.
Zurück zum Zitat Yarinezhad, R., & Hashemi, S. N. (2020). A sensor deployment approach for target coverage problem in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 11,1–16. Yarinezhad, R., & Hashemi, S. N. (2020). A sensor deployment approach for target coverage problem in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 11,1–16.
9.
Zurück zum Zitat Chelbi, S., Dhahri, H., & Bouaziz, R. (2021). Node placement optimization using particle swarm optimization and iterated local search algorithm in wireless sensor networks. International Journal of Communication Systems, 34(9), e4813. CrossRef Chelbi, S., Dhahri, H., & Bouaziz, R. (2021). Node placement optimization using particle swarm optimization and iterated local search algorithm in wireless sensor networks. International Journal of Communication Systems, 34(9), e4813. CrossRef
10.
Zurück zum Zitat Priyadarshi, R., Gupta, B., & Anurag, A. (2020). Deployment techniques in wireless sensor networks: A survey, classification, challenges, and future research issues. The Journal of Supercomputing, 76, 1–41. CrossRef Priyadarshi, R., Gupta, B., & Anurag, A. (2020). Deployment techniques in wireless sensor networks: A survey, classification, challenges, and future research issues. The Journal of Supercomputing, 76, 1–41. CrossRef
11.
Zurück zum Zitat Purushothaman, R., Rajagopalan, S., & Dhandapani, G. (2020). Hybridizing gray wolf optimization (GWO) with grasshopper optimization algorithm (GOA) for text feature selection and clustering. Applied Soft Computing, 96, 10665106651. CrossRef Purushothaman, R., Rajagopalan, S., & Dhandapani, G. (2020). Hybridizing gray wolf optimization (GWO) with grasshopper optimization algorithm (GOA) for text feature selection and clustering. Applied Soft Computing, 96, 10665106651. CrossRef
12.
Zurück zum Zitat Hamidouche, R., Aliouat, Z., Ari, A. A. A., & Gueroui, M. (2019). An efficient clustering strategy avoiding buffer overflow in IoT sensors: A bio-inspired based approach. IEEE Access, 7, 156733–156751. CrossRef Hamidouche, R., Aliouat, Z., Ari, A. A. A., & Gueroui, M. (2019). An efficient clustering strategy avoiding buffer overflow in IoT sensors: A bio-inspired based approach. IEEE Access, 7, 156733–156751. CrossRef
13.
Zurück zum Zitat Mohar, S. S., Goyal, S., & Kaur, R. (2021). Evolutionary algorithms for deployment of sensor nodes in wireless sensor networks: A comprehensive review. In 2nd international conference for emerging technology (INCET) (pp. 1–7). IEEE. Mohar, S. S., Goyal, S., & Kaur, R. (2021). Evolutionary algorithms for deployment of sensor nodes in wireless sensor networks: A comprehensive review. In 2nd international conference for emerging technology (INCET) (pp. 1–7). IEEE.
14.
Zurück zum Zitat Singh, A., Sharma, S., & Singh, J. (2021). Nature-inspired algorithms for wireless sensor networks: A comprehensive survey. Computer Science Review, 39, 100342. CrossRef Singh, A., Sharma, S., & Singh, J. (2021). Nature-inspired algorithms for wireless sensor networks: A comprehensive survey. Computer Science Review, 39, 100342. CrossRef
15.
Zurück zum Zitat Deif, D. S., & Gadallah, Y. (2013). Classification of wireless sensor networks deployment techniques. IEEE Communications Surveys & Tutorials, 16(2), 834–855. CrossRef Deif, D. S., & Gadallah, Y. (2013). Classification of wireless sensor networks deployment techniques. IEEE Communications Surveys & Tutorials, 16(2), 834–855. CrossRef
16.
Zurück zum Zitat Elloumi, S., Hudry, O., Marie, E., Martin, A., Plateau, A., & Rovedakis, S. (2021). Optimization of wireless sensor networks deployment with coverage and connectivity constraints. Annals of Operations Research, 298(1), 183–206. CrossRef Elloumi, S., Hudry, O., Marie, E., Martin, A., Plateau, A., & Rovedakis, S. (2021). Optimization of wireless sensor networks deployment with coverage and connectivity constraints. Annals of Operations Research, 298(1), 183–206. CrossRef
17.
Zurück zum Zitat Harizan, S., & Kuila, P. (2020) Nature-inspired algorithms for k-coverage and m-connectivity problems in wireless sensor networks. In Design frameworks for wireless networks (pp. 281–301). Springer. Harizan, S., & Kuila, P. (2020) Nature-inspired algorithms for k-coverage and m-connectivity problems in wireless sensor networks. In Design frameworks for wireless networks (pp. 281–301). Springer.
18.
Zurück zum Zitat Jehan, C., & Punithavathani, D. S. (2017). Potential position node placement approach via oppositional gravitational search for fulfill coverage and connectivity in target based wireless sensor networks. Wireless Networks, 23(6), 1875–1888. CrossRef Jehan, C., & Punithavathani, D. S. (2017). Potential position node placement approach via oppositional gravitational search for fulfill coverage and connectivity in target based wireless sensor networks. Wireless Networks, 23(6), 1875–1888. CrossRef
19.
Zurück zum Zitat Barkhoda, W., & Sheikhi, H. (2020). Immigrant imperialist competitive algorithm to solve the multi-constraint node placement problem in target-based wireless sensor networks. Ad Hoc Networks, 106, 102183. CrossRef Barkhoda, W., & Sheikhi, H. (2020). Immigrant imperialist competitive algorithm to solve the multi-constraint node placement problem in target-based wireless sensor networks. Ad Hoc Networks, 106, 102183. CrossRef
20.
Zurück zum Zitat Le Nguyen, P., Hanh, N. T., Khuong, N. T., Binh, H. T. T., & Ji, Y. (2019). Node placement for connected target coverage in wireless sensor networks with dynamic sinks. Pervasive and Mobile Computing, 59, 101070. CrossRef Le Nguyen, P., Hanh, N. T., Khuong, N. T., Binh, H. T. T., & Ji, Y. (2019). Node placement for connected target coverage in wireless sensor networks with dynamic sinks. Pervasive and Mobile Computing, 59, 101070. CrossRef
21.
Zurück zum Zitat Harizan, S., & Kuila, P. (2020). A novel NSGA-II for coverage and connectivity aware sensor node scheduling in industrial wireless sensor networks. Digital Signal Processing, 105, 102753. CrossRef Harizan, S., & Kuila, P. (2020). A novel NSGA-II for coverage and connectivity aware sensor node scheduling in industrial wireless sensor networks. Digital Signal Processing, 105, 102753. CrossRef
22.
Zurück zum Zitat Balaji, S., Anitha, M., Rekha, D., & Arivudainambi, D. (2020). Energy efficient target coverage for a wireless sensor network. Measurement, 165, 108167. CrossRef Balaji, S., Anitha, M., Rekha, D., & Arivudainambi, D. (2020). Energy efficient target coverage for a wireless sensor network. Measurement, 165, 108167. CrossRef
23.
Zurück zum Zitat Liu, Y., Chin, K.-W., Yang, C., & He, T. (2019). Nodes deployment for coverage in rechargeable wireless sensor networks. IEEE Transactions on Vehicular Technology, 68(6), 6064–6073. CrossRef Liu, Y., Chin, K.-W., Yang, C., & He, T. (2019). Nodes deployment for coverage in rechargeable wireless sensor networks. IEEE Transactions on Vehicular Technology, 68(6), 6064–6073. CrossRef
24.
Zurück zum Zitat Yoon, Y., & Kim, Y.-H. (2013). An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks. IEEE Transactions on Cybernetics, 43(5), 1473–1483. CrossRef Yoon, Y., & Kim, Y.-H. (2013). An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks. IEEE Transactions on Cybernetics, 43(5), 1473–1483. CrossRef
25.
Zurück zum Zitat Binh, H. T. T., Hanh, N. T., Nghia, N. D., Dey, N., et al. (2020). Metaheuristics for maximization of obstacles constrained area coverage in heterogeneous wireless sensor networks. Applied Soft Computing, 86, 105939. CrossRef Binh, H. T. T., Hanh, N. T., Nghia, N. D., Dey, N., et al. (2020). Metaheuristics for maximization of obstacles constrained area coverage in heterogeneous wireless sensor networks. Applied Soft Computing, 86, 105939. CrossRef
26.
Zurück zum Zitat Moh’d Alia, O., & Al-Ajouri, A. (2016). Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm. IEEE Sensors Journal, 17(3), 882–896. Moh’d Alia, O., & Al-Ajouri, A. (2016). Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm. IEEE Sensors Journal, 17(3), 882–896.
27.
Zurück zum Zitat Torkestani, J. A. (2013). An adaptive energy-efficient area coverage algorithm for wireless sensor networks. Ad hoc networks, 11(6), 1655–1666. CrossRef Torkestani, J. A. (2013). An adaptive energy-efficient area coverage algorithm for wireless sensor networks. Ad hoc networks, 11(6), 1655–1666. CrossRef
28.
Zurück zum Zitat Vatankhah, A., & Babaie, S. (2018). An optimized bidding-based coverage improvement algorithm for hybrid wireless sensor networks. Computers & Electrical Engineering, 65, 1–17. CrossRef Vatankhah, A., & Babaie, S. (2018). An optimized bidding-based coverage improvement algorithm for hybrid wireless sensor networks. Computers & Electrical Engineering, 65, 1–17. CrossRef
29.
Zurück zum Zitat Mohar, S. S., Goyal, S., & Kaur, R. (2021). Optimized sensor nodes deployment in wireless sensor network using bat algorithm. Wireless Personal Communications, 116(4), 2835–2853. CrossRef Mohar, S. S., Goyal, S., & Kaur, R. (2021). Optimized sensor nodes deployment in wireless sensor network using bat algorithm. Wireless Personal Communications, 116(4), 2835–2853. CrossRef
30.
Zurück zum Zitat Kotiyal, V., Singh, A., Sharma, S., Nagar, J., & Lee, C.-C. (2021). ECS-NL: An enhanced cuckoo search algorithm for node localisation in wireless sensor networks. Sensors, 21(11), 3576. CrossRef Kotiyal, V., Singh, A., Sharma, S., Nagar, J., & Lee, C.-C. (2021). ECS-NL: An enhanced cuckoo search algorithm for node localisation in wireless sensor networks. Sensors, 21(11), 3576. CrossRef
31.
Zurück zum Zitat Al-Aboody, N., & Al-Raweshidy, H. (2016). Grey wolf optimization-based energy-efficient routing protocol for heterogeneous wireless sensor networks. In 4th international symposium on computational and business intelligence (ISCBI) (pp. 101–107). IEEE. Al-Aboody, N., & Al-Raweshidy, H. (2016). Grey wolf optimization-based energy-efficient routing protocol for heterogeneous wireless sensor networks. In 4th international symposium on computational and business intelligence (ISCBI) (pp. 101–107). IEEE.
32.
Zurück zum Zitat Rajakumar, R., Amudhavel, J., Dhavachelvan, P., & Vengattaraman, T. (2017). GWO-LPWSN: Grey wolf optimization algorithm for node localization problem in wireless sensor networks. Journal of Computer Networks and Communications Rajakumar, R., Amudhavel, J., Dhavachelvan, P., & Vengattaraman, T. (2017). GWO-LPWSN: Grey wolf optimization algorithm for node localization problem in wireless sensor networks. Journal of Computer Networks and Communications
33.
Zurück zum Zitat Deif, D. S., & Gadallah, Y. (2017). An ant colony optimization approach for the deployment of reliable wireless sensor networks. IEEE Access, 5, 10744–10756. CrossRef Deif, D. S., & Gadallah, Y. (2017). An ant colony optimization approach for the deployment of reliable wireless sensor networks. IEEE Access, 5, 10744–10756. CrossRef
34.
Zurück zum Zitat Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. CrossRef Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. CrossRef
35.
Zurück zum Zitat Kaushik, A., Indu, S., & Gupta, D. (2019). A grey wolf optimization approach for improving the performance of wireless sensor networks. Wireless Personal Communications, 106(3), 1429–1449. CrossRef Kaushik, A., Indu, S., & Gupta, D. (2019). A grey wolf optimization approach for improving the performance of wireless sensor networks. Wireless Personal Communications, 106(3), 1429–1449. CrossRef
36.
Zurück zum Zitat Diop, B., Diongue, D., & Thiare, O. (2014). A weight-based greedy algorithm for target coverage problem in wireless sensor networks. In International conference on computer, communications, and control technology (I4CT) (pp. 120–125). IEEE. Diop, B., Diongue, D., & Thiare, O. (2014). A weight-based greedy algorithm for target coverage problem in wireless sensor networks. In International conference on computer, communications, and control technology (I4CT) (pp. 120–125). IEEE.
37.
Zurück zum Zitat Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992–1007. CrossRef Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992–1007. CrossRef
38.
Zurück zum Zitat Cao, L., Yue, Y., Cai, Y., & Zhang, Y. (2021). A novel coverage optimization strategy for heterogeneous wireless sensor networks based on connectivity and reliability. IEEE Access, 9, 18424–18442. CrossRef Cao, L., Yue, Y., Cai, Y., & Zhang, Y. (2021). A novel coverage optimization strategy for heterogeneous wireless sensor networks based on connectivity and reliability. IEEE Access, 9, 18424–18442. CrossRef
Metadaten
Titel
A QoS aware optimal node deployment in wireless sensor network using Grey wolf optimization approach for IoT applications
verfasst von
Kavita Jaiswal
Veena Anand
Publikationsdatum
14.09.2021
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 4/2021
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-021-00831-9

Weitere Artikel der Ausgabe 4/2021

Telecommunication Systems 4/2021 Zur Ausgabe