Skip to main content
Erschienen in: Soft Computing 14/2022

02.06.2022 | Data analytics and machine learning

A quantum system control method based on enhanced reinforcement learning

verfasst von: Wenjie Liu, Bosi Wang, Jihao Fan, Yebo Ge, Mohammed Zidan

Erschienen in: Soft Computing | Ausgabe 14/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Traditional quantum system control methods often face different constraints, and are easy to cause both leakage and stochastic control errors under the condition of limited resources. Reinforcement learning has been proved as an efficient way to complete the quantum system control task. To learn a satisfactory control strategy under the condition of limited resources, a quantum system control method based on enhanced reinforcement learning (QSC-ERL) is proposed. The states and actions in reinforcement learning are mapped to quantum states and control operations in quantum systems. By using new enhanced neural networks, reinforcement learning can quickly achieve the maximization of long-term cumulative rewards, and a quantum state can be evolved accurately from an initial state to a target state. According to the number of candidate unitary operations, the three-switch control is used for simulation experiments. Compared with other methods, the QSC-ERL achieves close to 1 fidelity learning control of quantum systems, and takes fewer episodes to quantum state evolution under the condition of limited resources.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat An Z, Zhou D (2019) Deep reinforcement learning for quantum gate control. EPL (Europhysics Letters) 126(6):60002CrossRef An Z, Zhou D (2019) Deep reinforcement learning for quantum gate control. EPL (Europhysics Letters) 126(6):60002CrossRef
Zurück zum Zitat An Z, Song HJ, He QK, Zhou D (2021) Quantum optimal control of multilevel dissipative quantum systems with reinforcement learning. Phys Rev A 103(1):012404CrossRef An Z, Song HJ, He QK, Zhou D (2021) Quantum optimal control of multilevel dissipative quantum systems with reinforcement learning. Phys Rev A 103(1):012404CrossRef
Zurück zum Zitat Bukov M (2018) Reinforcement learning for autonomous preparation of floquet-engineered states: inverting the quantum kapitza oscillator. Phys Rev B 98(22):224305CrossRef Bukov M (2018) Reinforcement learning for autonomous preparation of floquet-engineered states: inverting the quantum kapitza oscillator. Phys Rev B 98(22):224305CrossRef
Zurück zum Zitat Bukov M, Day AG, Sels D, Weinberg P, Polkovnikov A, Mehta P (2018) Reinforcement learning in different phases of quantum control. Phys Rev X 8(3):031086 Bukov M, Day AG, Sels D, Weinberg P, Polkovnikov A, Mehta P (2018) Reinforcement learning in different phases of quantum control. Phys Rev X 8(3):031086
Zurück zum Zitat Cárdenas-López FA, Lamata L, Retamal JC, Solano E (2018) Multiqubit and multilevel quantum reinforcement learning with quantum technologies. PLoS ONE 13(7):e0200455CrossRef Cárdenas-López FA, Lamata L, Retamal JC, Solano E (2018) Multiqubit and multilevel quantum reinforcement learning with quantum technologies. PLoS ONE 13(7):e0200455CrossRef
Zurück zum Zitat Chakrabarti R, Rabitz H (2007) Quantum control landscapes. Int Rev Phys Chem 26(4):671–735CrossRef Chakrabarti R, Rabitz H (2007) Quantum control landscapes. Int Rev Phys Chem 26(4):671–735CrossRef
Zurück zum Zitat Chen C, Dong D, Li HX, Chu J, Tarn TJ (2013) Fidelity-based probabilistic q-learning for control of quantum systems. IEEE Trans Neural Netw Learn Syst 25(5):920–933CrossRef Chen C, Dong D, Li HX, Chu J, Tarn TJ (2013) Fidelity-based probabilistic q-learning for control of quantum systems. IEEE Trans Neural Netw Learn Syst 25(5):920–933CrossRef
Zurück zum Zitat Chu S (2002) Cold atoms and quantum control. Nature 416(6877):206–210CrossRef Chu S (2002) Cold atoms and quantum control. Nature 416(6877):206–210CrossRef
Zurück zum Zitat Chunlin C, Frank J, Daoyi D (2012) Hybrid control of uncertain quantum systems via fuzzy estimation and quantum reinforcement learning. In: Proceedings of the 31st Chinese Control Conference, IEEE, pp 7177–7182 Chunlin C, Frank J, Daoyi D (2012) Hybrid control of uncertain quantum systems via fuzzy estimation and quantum reinforcement learning. In: Proceedings of the 31st Chinese Control Conference, IEEE, pp 7177–7182
Zurück zum Zitat D’Alessandro D, Dahleh M (2001) Optimal control of two-level quantum systems. IEEE Trans Autom Control 46(6):866–876MathSciNetCrossRef D’Alessandro D, Dahleh M (2001) Optimal control of two-level quantum systems. IEEE Trans Autom Control 46(6):866–876MathSciNetCrossRef
Zurück zum Zitat Dong D, Chen C, Li H, Tarn TJ (2008) Quantum reinforcement learning. IEEE Trans Syst Man Cybern Part B (Cybernetics) 38(5):1207–1220CrossRef Dong D, Chen C, Li H, Tarn TJ (2008) Quantum reinforcement learning. IEEE Trans Syst Man Cybern Part B (Cybernetics) 38(5):1207–1220CrossRef
Zurück zum Zitat Dong D, Chen C, Tarn TJ, Pechen A, Rabitz H (2008) Incoherent control of quantum systems with wavefunction-controllable subspaces via quantum reinforcement learning. IEEE Trans Syst Man Cybern Part B (Cybernetics) 38(4):957–962CrossRef Dong D, Chen C, Tarn TJ, Pechen A, Rabitz H (2008) Incoherent control of quantum systems with wavefunction-controllable subspaces via quantum reinforcement learning. IEEE Trans Syst Man Cybern Part B (Cybernetics) 38(4):957–962CrossRef
Zurück zum Zitat Fang W, Pang L, Yi W (2020) Survey on the application of deep reinforcement learning in image processing. J Artif Intell 2(1):39–58CrossRef Fang W, Pang L, Yi W (2020) Survey on the application of deep reinforcement learning in image processing. J Artif Intell 2(1):39–58CrossRef
Zurück zum Zitat Fösel T, Tighineanu P, Weiss T, Marquardt F (2018) Reinforcement learning with neural networks for quantum feedback. Phys Rev X 8(3):031084 Fösel T, Tighineanu P, Weiss T, Marquardt F (2018) Reinforcement learning with neural networks for quantum feedback. Phys Rev X 8(3):031084
Zurück zum Zitat Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J et al (2018) Recent advances in convolutional neural networks. Pattern Recogn 77:354–377CrossRef Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J et al (2018) Recent advances in convolutional neural networks. Pattern Recogn 77:354–377CrossRef
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
Zurück zum Zitat Hu B, Zhao H, Yang Y, Zhou B, Raj ANJ (2020) Multiple faces tracking using feature fusion and neural network in video. Intell Autom Soft Comput 26(6):1549–1560CrossRef Hu B, Zhao H, Yang Y, Zhou B, Raj ANJ (2020) Multiple faces tracking using feature fusion and neural network in video. Intell Autom Soft Comput 26(6):1549–1560CrossRef
Zurück zum Zitat Li Z, Zhang J, Zhang K, Li Z (2018) Visual tracking with weighted adaptive local sparse appearance model via spatio-temporal context learning. IEEE Trans Image Process 27(9):4478–4489MathSciNetCrossRef Li Z, Zhang J, Zhang K, Li Z (2018) Visual tracking with weighted adaptive local sparse appearance model via spatio-temporal context learning. IEEE Trans Image Process 27(9):4478–4489MathSciNetCrossRef
Zurück zum Zitat Ma H, Chen C (2020) Several developments in learning control of quantum systems. In: 2020 IEEE international conference on systems, man, and cybernetics (SMC), IEEE, pp 4165–4172 Ma H, Chen C (2020) Several developments in learning control of quantum systems. In: 2020 IEEE international conference on systems, man, and cybernetics (SMC), IEEE, pp 4165–4172
Zurück zum Zitat Meng F, Cong S (2022) Control design for state transition of open quantum system. J Phys Conf Series 2183:012005CrossRef Meng F, Cong S (2022) Control design for state transition of open quantum system. J Phys Conf Series 2183:012005CrossRef
Zurück zum Zitat Michael MH, Silveri M, Brierley R, Albert VV, Salmilehto J, Jiang L, Girvin SM (2016) New class of quantum error-correcting codes for a bosonic mode. Phys Rev X 6(3):031006 Michael MH, Silveri M, Brierley R, Albert VV, Salmilehto J, Jiang L, Girvin SM (2016) New class of quantum error-correcting codes for a bosonic mode. Phys Rev X 6(3):031006
Zurück zum Zitat Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533CrossRef Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533CrossRef
Zurück zum Zitat Niu MY, Boixo S, Smelyanskiy VN, Neven H (2019) Universal quantum control through deep reinforcement learning. npj Quant Inform 5(1):1–8CrossRef Niu MY, Boixo S, Smelyanskiy VN, Neven H (2019) Universal quantum control through deep reinforcement learning. npj Quant Inform 5(1):1–8CrossRef
Zurück zum Zitat Palittapongarnpim P, Wittek P, Sanders BC (2017) Robustness of learning-assisted adaptive quantum-enhanced metrology in the presence of noise. In: 2017 IEEE international conference on systems, man, and cybernetics (SMC), IEEE, pp 294–299 Palittapongarnpim P, Wittek P, Sanders BC (2017) Robustness of learning-assisted adaptive quantum-enhanced metrology in the presence of noise. In: 2017 IEEE international conference on systems, man, and cybernetics (SMC), IEEE, pp 294–299
Zurück zum Zitat Patsch S, Maniscalco S, Koch CP (2020) Simulation of open-quantum-system dynamics using the quantum zeno effect. Phys Rev Res 2(2):023133CrossRef Patsch S, Maniscalco S, Koch CP (2020) Simulation of open-quantum-system dynamics using the quantum zeno effect. Phys Rev Res 2(2):023133CrossRef
Zurück zum Zitat Rabitz H, de Vivie-Riedle R, Motzkus M, Kompa K (2000) Whither the future of controlling quantum phenomena? Science 288(5467):824–828CrossRef Rabitz H, de Vivie-Riedle R, Motzkus M, Kompa K (2000) Whither the future of controlling quantum phenomena? Science 288(5467):824–828CrossRef
Zurück zum Zitat Roslund J, Rabitz H (2009) Gradient algorithm applied to laboratory quantum control. Phys Rev A 79(5):053417CrossRef Roslund J, Rabitz H (2009) Gradient algorithm applied to laboratory quantum control. Phys Rev A 79(5):053417CrossRef
Zurück zum Zitat Singh SP, Sutton RS (1996) Reinforcement learning with replacing eligibility traces. Mach Learn 22(1):123–158 Singh SP, Sutton RS (1996) Reinforcement learning with replacing eligibility traces. Mach Learn 22(1):123–158
Zurück zum Zitat Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT press Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT press
Zurück zum Zitat Sutton RS, McAllester DA, Singh SP, Mansour Y (2000) Policy gradient methods for reinforcement learning with function approximation. In: Advances in neural information processing systems, pp 1057–1063 Sutton RS, McAllester DA, Singh SP, Mansour Y (2000) Policy gradient methods for reinforcement learning with function approximation. In: Advances in neural information processing systems, pp 1057–1063
Zurück zum Zitat Torosov BT, Shore BW, Vitanov NV (2021) Coherent control techniques for two-state quantum systems: a comparative study. Phys Rev A 103(3):033110MathSciNetCrossRef Torosov BT, Shore BW, Vitanov NV (2021) Coherent control techniques for two-state quantum systems: a comparative study. Phys Rev A 103(3):033110MathSciNetCrossRef
Zurück zum Zitat Tsubouchi M, Momose T (2008) Rovibrational wave-packet manipulation using shaped midinfrared femtosecond pulses toward quantum computation: optimization of pulse shape by a genetic algorithm. Phys Rev A 77(5):052326CrossRef Tsubouchi M, Momose T (2008) Rovibrational wave-packet manipulation using shaped midinfrared femtosecond pulses toward quantum computation: optimization of pulse shape by a genetic algorithm. Phys Rev A 77(5):052326CrossRef
Zurück zum Zitat Vedaie SS, Palittapongarnpim P, Sanders BC (2018) Reinforcement learning for quantum metrology via quantum control. In: 2018 IEEE photonics society summer topical meeting series (SUM), IEEE, pp 163–164 Vedaie SS, Palittapongarnpim P, Sanders BC (2018) Reinforcement learning for quantum metrology via quantum control. In: 2018 IEEE photonics society summer topical meeting series (SUM), IEEE, pp 163–164
Zurück zum Zitat Vrajitoarea A, Huang Z, Groszkowski P, Koch J, Houck AA (2020) Quantum control of an oscillator using a stimulated josephson nonlinearity. Nat Phys 16(2):211–217CrossRef Vrajitoarea A, Huang Z, Groszkowski P, Koch J, Houck AA (2020) Quantum control of an oscillator using a stimulated josephson nonlinearity. Nat Phys 16(2):211–217CrossRef
Zurück zum Zitat Watkins CJ, Dayan P (1992) Q-learning. Mach Learn 8(3–4):279–292MATH Watkins CJ, Dayan P (1992) Q-learning. Mach Learn 8(3–4):279–292MATH
Zurück zum Zitat Xu F, Zhang X, Xin Z, Yang A (2019) Investigation on the chinese text sentiment analysis based on convolutional neural networks in deep learning. Comput Mater Contin 58(3):697–709 Xu F, Zhang X, Xin Z, Yang A (2019) Investigation on the chinese text sentiment analysis based on convolutional neural networks in deep learning. Comput Mater Contin 58(3):697–709
Zurück zum Zitat Yu S, Albarrán-Arriagada F, Retamal JC, Wang YT, Liu W, Ke ZJ, Meng Y, Li ZP, Tang JS, Solano E et al (2019) Reconstruction of a photonic qubit state with reinforcement learning. Adv Quant Technol 2(7–8):1800074CrossRef Yu S, Albarrán-Arriagada F, Retamal JC, Wang YT, Liu W, Ke ZJ, Meng Y, Li ZP, Tang JS, Solano E et al (2019) Reconstruction of a photonic qubit state with reinforcement learning. Adv Quant Technol 2(7–8):1800074CrossRef
Zurück zum Zitat Zhang XM, Wei Z, Asad R, Yang XC, Wang X (2019) When does reinforcement learning stand out in quantum control? A comparative study on state preparation. npj Quant Inform 5(1):1–7CrossRef Zhang XM, Wei Z, Asad R, Yang XC, Wang X (2019) When does reinforcement learning stand out in quantum control? A comparative study on state preparation. npj Quant Inform 5(1):1–7CrossRef
Zurück zum Zitat Zhang Y, Wang Z (2020) Hybrid malware detection approach with feedback-directed machine learning. Inf Sci 63(139103):1–139103 Zhang Y, Wang Z (2020) Hybrid malware detection approach with feedback-directed machine learning. Inf Sci 63(139103):1–139103
Metadaten
Titel
A quantum system control method based on enhanced reinforcement learning
verfasst von
Wenjie Liu
Bosi Wang
Jihao Fan
Yebo Ge
Mohammed Zidan
Publikationsdatum
02.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing / Ausgabe 14/2022
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-022-07179-5

Weitere Artikel der Ausgabe 14/2022

Soft Computing 14/2022 Zur Ausgabe