Skip to main content
Erschienen in: Telecommunication Systems 2/2021

11.02.2021

A queueing model for a wireless sensor node using energy harvesting

verfasst von: Chris Blondia

Erschienen in: Telecommunication Systems | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we propose a generic queueing model that can be used to evaluate the performance of a wireless sensor node that uses energy harvesting. The alteration of such a device between the transmit and sleep mode (or between consuming energy and harvesting energy), is modeled by means of a finite capacity queueing system with repeated server vacations. The duration of a service, resp. vacation, is determined by the available energy at the start of the service, resp. vacation. Therefor we introduce in the model a variable that keeps track of the available energy. The system occupancy and the available energy are observed at inspection instants (i.e., the end of a service or of a vacation), resulting in a discrete-time Markov Chain. We derive closed form formulas for the system occupancy distribution at inspection instants and at arbitrary time instants together with the Laplace transform of the waiting time distribution. The possible use of the model to evaluate the system’s performance for various parameter values is illustrated by means of a number of examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: a comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054.CrossRef Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: a comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054.CrossRef
2.
Zurück zum Zitat Ahmed, I., Butt, M. M., Psomas, C., Mohammed, A., Krikidis, I., & Guizani, M. (2015). Survey on energy harvesting wireless communications: challenges and opportunities for radio resource allocation. Computer Networks, 88, 234–248.CrossRef Ahmed, I., Butt, M. M., Psomas, C., Mohammed, A., Krikidis, I., & Guizani, M. (2015). Survey on energy harvesting wireless communications: challenges and opportunities for radio resource allocation. Computer Networks, 88, 234–248.CrossRef
3.
Zurück zum Zitat C. Delgado, J.M. Sanz, C. Blondia, J. Famaey (2020), Battery-less LoRaWAN communications using energy harvesting: modeling and characterization. IEEE Internet of Things Journal. C. Delgado, J.M. Sanz, C. Blondia, J. Famaey (2020), Battery-less LoRaWAN communications using energy harvesting: modeling and characterization. IEEE Internet of Things Journal.
4.
Zurück zum Zitat Patil, K., & Fiems, D. (2018). The value of information in energy harvesting sensor networks. Operations Research Letters, 46(3), 362–366.CrossRef Patil, K., & Fiems, D. (2018). The value of information in energy harvesting sensor networks. Operations Research Letters, 46(3), 362–366.CrossRef
5.
Zurück zum Zitat A. Mouapi and N. Hakem (2016), Performance evaluation of wireless sensor node powered by RF energy harvesting. In Proceedings of the 16th Mediterranean Microwave Symposium (MMS), Abu Dhabi, 1–4. A. Mouapi and N. Hakem (2016), Performance evaluation of wireless sensor node powered by RF energy harvesting. In Proceedings of the 16th Mediterranean Microwave Symposium (MMS), Abu Dhabi, 1–4.
6.
Zurück zum Zitat Kosunalp, S. (2015). MAC protocols for energy harvesting wireless sensor networks: a survey. ETRI Journal, 37(4), 804–812.CrossRef Kosunalp, S. (2015). MAC protocols for energy harvesting wireless sensor networks: a survey. ETRI Journal, 37(4), 804–812.CrossRef
7.
Zurück zum Zitat Sherazi, H. H. R., Grieco, L. A., & Boggia, G. (2018). A comprehensive review on energy harvesting MAC protocols in WSNs: challenges and tradeoffs. Ad Hoc Networks, 17, 117–134.CrossRef Sherazi, H. H. R., Grieco, L. A., & Boggia, G. (2018). A comprehensive review on energy harvesting MAC protocols in WSNs: challenges and tradeoffs. Ad Hoc Networks, 17, 117–134.CrossRef
8.
Zurück zum Zitat Mitici, M. A., Goseling, J., de Graaf, M., & Boucherie, J. (2016). Energy-efficient data collection in wireless sensor networks with time constraints. Performance Evaluation, 102, 34–52.CrossRef Mitici, M. A., Goseling, J., de Graaf, M., & Boucherie, J. (2016). Energy-efficient data collection in wireless sensor networks with time constraints. Performance Evaluation, 102, 34–52.CrossRef
9.
Zurück zum Zitat Li J., Zhou H.Y., Zuo D.C., Hou K.M., Xie H.P. (2014), Zhou P. Energy consumption evaluation for wireless sensor network nodes based on queuing Petri net. International Journal of Distribution of. Sensing Network, 11 Li J., Zhou H.Y., Zuo D.C., Hou K.M., Xie H.P. (2014), Zhou P. Energy consumption evaluation for wireless sensor network nodes based on queuing Petri net. International Journal of Distribution of. Sensing Network, 11
10.
Zurück zum Zitat Ke J.-F., Chen W.-J., Huang D.-C. (2015). A life extend approach based on priority queue N strategy for wireless sensor network. In: Proceedings of the 11th EAI international conference on heterogeneous networking for quality, reliability, security and robustness (QSHINE), Taipei, Taiwan. 19–20 Aug 2015, pp 272–279. Ke J.-F., Chen W.-J., Huang D.-C. (2015). A life extend approach based on priority queue N strategy for wireless sensor network. In: Proceedings of the 11th EAI international conference on heterogeneous networking for quality, reliability, security and robustness (QSHINE), Taipei, Taiwan. 19–20 Aug 2015, pp 272–279.
11.
Zurück zum Zitat Ghosh S., Unnikrishnan S. (2017). Reduced power consumption in wireless sensor networks using queue-based approach. In: Proceedings of the 5th IEEE international conference on advances in computing, communication and control (ICAC3); Mumbai, India. 1–2 Dec 2017 Ghosh S., Unnikrishnan S. (2017). Reduced power consumption in wireless sensor networks using queue-based approach. In: Proceedings of the 5th IEEE international conference on advances in computing, communication and control (ICAC3); Mumbai, India. 1–2 Dec 2017
12.
Zurück zum Zitat Kempa, W. M. (2019). Analytical model of a wireless sensor network (WSN) node operation with a modified threshold-type energy saving mechanism. Sensors, 19(14), 3114.CrossRef Kempa, W. M. (2019). Analytical model of a wireless sensor network (WSN) node operation with a modified threshold-type energy saving mechanism. Sensors, 19(14), 3114.CrossRef
13.
Zurück zum Zitat Y-H. Chen, B. Ng, W.K.G. Seah, A-C. Pang (2016), Modeling and analysis: energy harvesting in the internet of things. In: Proceedings of the 19th international conference on modeling, analysis and simulation of wireless and mobile systems, pp 156–165 Y-H. Chen, B. Ng, W.K.G. Seah, A-C. Pang (2016), Modeling and analysis: energy harvesting in the internet of things. In: Proceedings of the 19th international conference on modeling, analysis and simulation of wireless and mobile systems, pp 156–165
14.
Zurück zum Zitat Cuypere, E., De Turck, K., & Fiems, D. (2018). A queueing model of an energy harvesting sensor node with data buffering. Telecommunication Systems, 67, 281–295.CrossRef Cuypere, E., De Turck, K., & Fiems, D. (2018). A queueing model of an energy harvesting sensor node with data buffering. Telecommunication Systems, 67, 281–295.CrossRef
15.
Zurück zum Zitat A. Seyedi, B. Sikdar (2008), Modeling and analysis of energy harvesting nodes in wireless sensor networks. In: Proceedings of the 2008 46th annual allerton conference on communication, control, and computing, Urbana-Champaign, IL A. Seyedi, B. Sikdar (2008), Modeling and analysis of energy harvesting nodes in wireless sensor networks. In: Proceedings of the 2008 46th annual allerton conference on communication, control, and computing, Urbana-Champaign, IL
16.
Zurück zum Zitat Jornet, J. S., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the Terahertz Band. IEEE Transactions on Nanotechnology, 11, 570–580.CrossRef Jornet, J. S., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the Terahertz Band. IEEE Transactions on Nanotechnology, 11, 570–580.CrossRef
17.
Zurück zum Zitat P.-J. Courtois (1980), The M/G/1 finite capacity queue with delays. IEEE Transaction on. Communication, COM 28(2), 165–172. P.-J. Courtois (1980), The M/G/1 finite capacity queue with delays. IEEE Transaction on. Communication, COM 28(2), 165–172.
18.
Zurück zum Zitat Lee, T. T. (1984). M/G/1/N queue with vacation time and exhaustive service discipline. Operations Research, 32(4), 774–784.CrossRef Lee, T. T. (1984). M/G/1/N queue with vacation time and exhaustive service discipline. Operations Research, 32(4), 774–784.CrossRef
19.
Zurück zum Zitat Frey, A., & Takahashi, Y. (1998). An explicit solution for an M/GI/1/N queue with vacation time and exhaustive service discipline. Journal of the Operations Research Society of Japan, 41(3), 95–100.CrossRef Frey, A., & Takahashi, Y. (1998). An explicit solution for an M/GI/1/N queue with vacation time and exhaustive service discipline. Journal of the Operations Research Society of Japan, 41(3), 95–100.CrossRef
20.
Zurück zum Zitat Blondia, C. (1989). A finite capacity multi-queueing system with priorities and with repeated server vacations. Queueing Systems, 5(4), 313–330.CrossRef Blondia, C. (1989). A finite capacity multi-queueing system with priorities and with repeated server vacations. Queueing Systems, 5(4), 313–330.CrossRef
21.
Zurück zum Zitat Blondia, C. (1991). Finite capacity vacation models with non-renewal input. Journal of Applied Probability, 28, 174–197.CrossRef Blondia, C. (1991). Finite capacity vacation models with non-renewal input. Journal of Applied Probability, 28, 174–197.CrossRef
22.
Zurück zum Zitat Mahabhashyam, S. R., & Gautam, N. (2005). On queues with Markov modulated service rates. Queueing Systems, 51, 89–113.CrossRef Mahabhashyam, S. R., & Gautam, N. (2005). On queues with Markov modulated service rates. Queueing Systems, 51, 89–113.CrossRef
23.
Zurück zum Zitat Horvath, G., Saffer, Z., & Telek, M. (2017). Queue length analysis of a markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial and Management Optimization, 13(3), 1365–1381.CrossRef Horvath, G., Saffer, Z., & Telek, M. (2017). Queue length analysis of a markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial and Management Optimization, 13(3), 1365–1381.CrossRef
24.
Zurück zum Zitat Abhishek, M. A. A., Boon, O. J., & Boxma, R.-Q. (2017). A single-server queue with batch arrivals and semi-Markov services. Queueing Systems, 86, 217–240.CrossRef Abhishek, M. A. A., Boon, O. J., & Boxma, R.-Q. (2017). A single-server queue with batch arrivals and semi-Markov services. Queueing Systems, 86, 217–240.CrossRef
Metadaten
Titel
A queueing model for a wireless sensor node using energy harvesting
verfasst von
Chris Blondia
Publikationsdatum
11.02.2021
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 2/2021
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-021-00758-1

Weitere Artikel der Ausgabe 2/2021

Telecommunication Systems 2/2021 Zur Ausgabe

Neuer Inhalt