Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 10/2019

02.05.2019

A re-examination of experimental evidence on the spectral dependence of the optical transition matrix element associated with thin-film silicon

verfasst von: Sanjida B. Minar, Saeed Moghaddam, Stephen K. O’Leary

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We analyze the error associated with the optical transition matrix element spectral dependencies for hydrogenated amorphous silicon and crystalline silicon found by Jackson et al. (Phys Rev B 31:5187–5198, 1985). We find that this error is considerable for photon energies less than 1.5 eV. This suggests that spectral dependencies for the optical transition matrix element, other than those proposed by Jackson et al., are possible for photon energies less than 1.5 eV. With this limitation in mind, we then fit a Lorentzian peak to the crystalline silicon experimental optical transition matrix element result of Jackson et al. Within the framework of the damped harmonic oscillator perspective, plotting the term related to the location of the resonant frequency as a function of the damping coefficient, for a number of thin-film silicon experimental results, we have found a relationship between these model parameters. We suspect that this dependence has important implications for the optical response of various forms of thin-film silicon and related materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In light of the importance of experimental error to this analysis, two sections will be devoted to this particular aspect of the analysis.
 
2
While the experimental results reported on in reference [39] are now over a quarter of a century old, no other more recently acquired collection of comparable experimental results is available. Accordingly, the experimental results presented in reference [39] are drawn upon for the purposes of this study.
 
3
The material that reference [39] examined, a-Si:H prepared through conventional plasma enhanced chemical vapor deposition, has served as the workhorse for the large area electronics field for many years. All “device quality” forms of a-Si:H, prepared through similar approaches, should exhibit very similar optical response characteristics, as has been established by the prominent researchers in the field. So we focus our analysis on optical response data corresponding to a-Si:H for three important reasons: (1) it provides a benchmark thin-film silicon material (all other forms of thin-film silicon may be viewed as being deviations from this reference material), (2) there is no other thin-film silicon material that has the extensive reservoir of experimental data on its optical response as a-Si:H, and (3) there is no other data set available corresponding to another form of thin-film silicon that is comparable to that of reference [39] for the case of a-Si:H.
 
4
The photo-thermal defection experimental measurements were performed using CCl\(_{4}\) as the deflecting medium. The influence of substrate absorption on the results was monitored throughout the experiment and shown to be negligible. The sub-gap optical response results found through photo-thermal defection spectroscopy were found to be within a factor of “2” equal to those determined using the photoconductive approach. For the purposes of their quantitative analysis, reference [39] draw upon their photoconductive derived results.
 
5
Reference [39] were forced to adopt a number of assumptions in order to acquire actual numerical values for their experimental results. For example, they had to estimate the DOS values at the valence band and conduction band mobility edges, values that they only could estimate to within a factor of “2”. Secondly, they had to arithmetically average the low photon energy ellipsometry results in order to remove the interference fringes that inevitably arise from the constructive and destructive interference that occurs. Third, they had to make an assumption related to the form of the tail states as DOS results acquired through the use of time-of-flight measurements are only available from 0.15 eV (and beyond) into the mobility gap. This leaves part of these DOS functions not experimentally accessible. So any determination of the spectral dependence of \(\mathcal{R}^{2} \left( E_{{\text{ph}}} \right) \) will be subject to uncertainty. That is why an evaluation of the limits over which a correct experimental resolution of \(\mathcal{R}^{2} \left( E_{{\text{ph}}} \right) \) could be reasonably expected is a topic that is certainly worthy of investigation within the framework of this study.
 
6
Experimental instruments, such as those employed for the measurements of reference [39], have a limited dynamic range. This, of course, imposes fundamental limitations on the resolution of the measured quantities.
 
7
In order to simplify matters, we set \(\mathcal{R}^{2} \left( E_{{\text{ph}}} \right) \) to 10 Å\(^{2}\) for the purposes of this analysis, noting that spectral variations in \(\mathcal{R}^{2} \left( E_{{\text{ph}}} \right) \) are unlikely to significantly shape this result. The errors, \(\Delta \epsilon _{2}\) and \(\Delta J\), are set to \(10^{-4}\) and \(10^{38}\) cm\(^{-6}\)eV\(^{-1}\), respectively, while \(\epsilon _{2} \left( E_{{\text{ph}}} \right) \) and \(J \left( E_{{\text{ph}}} \right) \) are set to the spectral evaluations found by reference [39]. Eq. (4) is used in order to perform this error evaluation.
 
8
The quantification of how the probability of correctly resolving an experimental quantity is related to the corresponding signal-to-noise ratio represents a problem of considerable importance to experimental science. Our approach, while admittedly simplistic, captures the essence of this problem.
 
9
Many authors (see, for example, Nunomura et al. [47]) merely assume that the initial spectral range prescribed by reference [39] for the constant spectral dependence of \(\mathcal{R}^{2} \left( E_{{\text{ph}}} \right) \) for the case of a-Si:H, i.e., 0.6 to 3.4 eV, is valid, and this has an impact on their experimental interpretations. Some authors (see, for example, [48, 49]) have found results for the spectral dependence of \(\mathcal{R}^{2} \left( E_{{\text{ph}}} \right) \) that are quite distinct from those of reference [39]. We believe that the results of the current analysis would have been helpful to these authors. Hopefully, our article, when published, will be helpful to those that follow.
 
Literatur
1.
Zurück zum Zitat R. Grigorovici, A. Vancu, Optical constants of amorphous silicon films near the main absorption edge. Thin Solid Films 2, 105–110 (1968)CrossRef R. Grigorovici, A. Vancu, Optical constants of amorphous silicon films near the main absorption edge. Thin Solid Films 2, 105–110 (1968)CrossRef
2.
Zurück zum Zitat M.H. Brodsky, R.S. Title, K. Weiser, G.D. Pettit, Structural, optical, and electrical properties of amorphous silicon films. Phys. Rev. B 1, 2632–2641 (1970)CrossRef M.H. Brodsky, R.S. Title, K. Weiser, G.D. Pettit, Structural, optical, and electrical properties of amorphous silicon films. Phys. Rev. B 1, 2632–2641 (1970)CrossRef
3.
Zurück zum Zitat F. Stern, Band-tail model for optical absorption and for the mobility edge in amorphous silicon. Phys. Rev. B 3, 2636–2645 (1971)CrossRef F. Stern, Band-tail model for optical absorption and for the mobility edge in amorphous silicon. Phys. Rev. B 3, 2636–2645 (1971)CrossRef
4.
Zurück zum Zitat J.E. Fischer, T.M. Donovan, Optical and photoelectric properties of amorphous silicon. J. Non-Cryst. Solids 8–10, 202–208 (1972)CrossRef J.E. Fischer, T.M. Donovan, Optical and photoelectric properties of amorphous silicon. J. Non-Cryst. Solids 8–10, 202–208 (1972)CrossRef
5.
Zurück zum Zitat E.C. Freeman, W. Paul, Optical constants of rf sputtered hydrogenated amorphous Si. Phys. Rev. B 20, 716–728 (1979)CrossRef E.C. Freeman, W. Paul, Optical constants of rf sputtered hydrogenated amorphous Si. Phys. Rev. B 20, 716–728 (1979)CrossRef
6.
Zurück zum Zitat B. Abeles, C.R. Wronski, T. Tiedje, G.D. Cody, Exponential absorption edge in hydrogenated a-Si films. Solid State Commun. 36, 537–540 (1980)CrossRef B. Abeles, C.R. Wronski, T. Tiedje, G.D. Cody, Exponential absorption edge in hydrogenated a-Si films. Solid State Commun. 36, 537–540 (1980)CrossRef
7.
Zurück zum Zitat G.D. Cody, C.R. Wronski, B. Abeles, R.B. Stephens, B. Brooks, Optical characterization of amorphous silicon hydride films. Solar Cells 2, 227–243 (1980)CrossRef G.D. Cody, C.R. Wronski, B. Abeles, R.B. Stephens, B. Brooks, Optical characterization of amorphous silicon hydride films. Solar Cells 2, 227–243 (1980)CrossRef
8.
Zurück zum Zitat G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 47, 1480–1483 (1981)CrossRef G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 47, 1480–1483 (1981)CrossRef
9.
Zurück zum Zitat G.D. Cody, B.G. Brooks, B. Abeles, Optical absorption above the optical gap of amorphous silicon hydride. Sol. Energy Mater. 8, 231–240 (1982)CrossRef G.D. Cody, B.G. Brooks, B. Abeles, Optical absorption above the optical gap of amorphous silicon hydride. Sol. Energy Mater. 8, 231–240 (1982)CrossRef
10.
Zurück zum Zitat J. Tardy, A. Cachard, R. Meaudre, Temperature and doping dependence of the optical absorption in amorphous hydrogenated silicon films. Thin Solid Films 89, 270 (1982)CrossRef J. Tardy, A. Cachard, R. Meaudre, Temperature and doping dependence of the optical absorption in amorphous hydrogenated silicon films. Thin Solid Films 89, 270 (1982)CrossRef
11.
Zurück zum Zitat E. Yablonovitch, G.D. Cody, Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Dev. 29, 300–305 (1982)CrossRef E. Yablonovitch, G.D. Cody, Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Dev. 29, 300–305 (1982)CrossRef
12.
Zurück zum Zitat W.B. Jackson, D.K. Biegelsen, R.J. Nemanich, J.C. Knights, Optical absorption spectra of surface or interface states in hydrogenated amorphous silicon. Appl. Phys. Lett. 42, 105–107 (1983)CrossRef W.B. Jackson, D.K. Biegelsen, R.J. Nemanich, J.C. Knights, Optical absorption spectra of surface or interface states in hydrogenated amorphous silicon. Appl. Phys. Lett. 42, 105–107 (1983)CrossRef
13.
Zurück zum Zitat T. Tiedje, E. Yablonovitch, G.D. Cody, B.G. Brooks, IEEE Trans. Electron Dev. 31, 711–716 (1984)CrossRef T. Tiedje, E. Yablonovitch, G.D. Cody, B.G. Brooks, IEEE Trans. Electron Dev. 31, 711–716 (1984)CrossRef
14.
Zurück zum Zitat R.V. Kruzelecky, C. Ukah, D. Racansky, S. Zukotynski, J.M. Perz, Interband optical absorption in amorphous silicon. J. Non-Cryst. Solids 103, 234–249 (1988)CrossRef R.V. Kruzelecky, C. Ukah, D. Racansky, S. Zukotynski, J.M. Perz, Interband optical absorption in amorphous silicon. J. Non-Cryst. Solids 103, 234–249 (1988)CrossRef
15.
Zurück zum Zitat T. Datta, J.A. Woollam, Generalized model for the optical absorption edge in a-Si:H. Phys. Rev. B 39, 1953–1954 (1989)CrossRef T. Datta, J.A. Woollam, Generalized model for the optical absorption edge in a-Si:H. Phys. Rev. B 39, 1953–1954 (1989)CrossRef
16.
Zurück zum Zitat G.D. Cody, Urbach edge of crystalline and amorphous silicon: a personal review. J. Non-Cryst. Solids 141, 3–15 (1992)CrossRef G.D. Cody, Urbach edge of crystalline and amorphous silicon: a personal review. J. Non-Cryst. Solids 141, 3–15 (1992)CrossRef
17.
Zurück zum Zitat G.E. Jellison Jr., M.F. Chisholm, S.M. Gorbatkin, Optical functions of chemical vapor deposited thin-film silicon determined by spectroscopic ellipsometry. Appl. Phys. Lett. 62, 3348–3350 (1993)CrossRef G.E. Jellison Jr., M.F. Chisholm, S.M. Gorbatkin, Optical functions of chemical vapor deposited thin-film silicon determined by spectroscopic ellipsometry. Appl. Phys. Lett. 62, 3348–3350 (1993)CrossRef
18.
Zurück zum Zitat S.K. O’Leary, S. Zukotynski, J.M. Perz, Semiclassical density-of-states and optical-absorption analysis of amorphous semiconductors. Phys. Rev. B 51, 4143–4149 (1995)CrossRef S.K. O’Leary, S. Zukotynski, J.M. Perz, Semiclassical density-of-states and optical-absorption analysis of amorphous semiconductors. Phys. Rev. B 51, 4143–4149 (1995)CrossRef
19.
Zurück zum Zitat S.K. O’Leary, S. Zukotynski, J.M. Perz, Optical absorption in amorphous semiconductors. Phys. Rev. B 52, 7795–7797 (1995)CrossRef S.K. O’Leary, S. Zukotynski, J.M. Perz, Optical absorption in amorphous semiconductors. Phys. Rev. B 52, 7795–7797 (1995)CrossRef
20.
Zurück zum Zitat S.K. O’Leary, Optical absorption, disorder, and the disorderless limit in amorphous semiconductors. Appl. Phys. Lett. 72, 1332–1334 (1998)CrossRef S.K. O’Leary, Optical absorption, disorder, and the disorderless limit in amorphous semiconductors. Appl. Phys. Lett. 72, 1332–1334 (1998)CrossRef
21.
Zurück zum Zitat M. Ambrico, L. Schiavulli, T. Ligonzo, G. Cicala, P. Capezzuto, G. Bruno, Optical absorption and electrical conductivity measurements of microcrystalline silicon layers grown by \(\text{SiF}_{4}/\text{H}_{2}\) plasma on glass substrates. Thin Solid Films 383, 200–202 (2001)CrossRef M. Ambrico, L. Schiavulli, T. Ligonzo, G. Cicala, P. Capezzuto, G. Bruno, Optical absorption and electrical conductivity measurements of microcrystalline silicon layers grown by \(\text{SiF}_{4}/\text{H}_{2}\) plasma on glass substrates. Thin Solid Films 383, 200–202 (2001)CrossRef
22.
Zurück zum Zitat B.J. Fogal, S.K. O’Leary, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, Disorder and the optical properties of amorphous silicon grown by molecular beam epitaxy. Solid State Commun. 120, 429–434 (2001)CrossRef B.J. Fogal, S.K. O’Leary, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, Disorder and the optical properties of amorphous silicon grown by molecular beam epitaxy. Solid State Commun. 120, 429–434 (2001)CrossRef
23.
Zurück zum Zitat S.K. O’Leary, B.J. Fogal, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, Optical dispersion relations in amorphous silicon grown by molecular beam epitaxy. J. Non-Cryst. Solids 290, 57–63 (2001)CrossRef S.K. O’Leary, B.J. Fogal, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, Optical dispersion relations in amorphous silicon grown by molecular beam epitaxy. J. Non-Cryst. Solids 290, 57–63 (2001)CrossRef
24.
Zurück zum Zitat D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, B.J. Fogal, S.K. O’Leary, Optical absorption in an amorphous silicon superlattice grown by molecular beam epitaxy. Solid State Commun. 122, 271–275 (2002)CrossRef D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, B.J. Fogal, S.K. O’Leary, Optical absorption in an amorphous silicon superlattice grown by molecular beam epitaxy. Solid State Commun. 122, 271–275 (2002)CrossRef
25.
Zurück zum Zitat A.S. Ferlauto, G.M. Ferreira, J.M. Pearce, C.R. Wronski, R.W. Collins, X. Deng, G. Ganguly, Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics. J. Appl. Phys. 92, 2424–2436 (2002)CrossRef A.S. Ferlauto, G.M. Ferreira, J.M. Pearce, C.R. Wronski, R.W. Collins, X. Deng, G. Ganguly, Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics. J. Appl. Phys. 92, 2424–2436 (2002)CrossRef
26.
Zurück zum Zitat J. Springer, A. Poruba, M. Vanecek, Improved three-dimensional optical model for thin-film silicon solar cells. J. Appl. Phys. 96, 5329–5337 (2004)CrossRef J. Springer, A. Poruba, M. Vanecek, Improved three-dimensional optical model for thin-film silicon solar cells. J. Appl. Phys. 96, 5329–5337 (2004)CrossRef
27.
Zurück zum Zitat J. Krc̆, M. Zeman, F. Smole, M. Topic̆, Optical modelling of thin-film silicon solar cells deposited on textured substrates. Thin Solid Films 451–452, 298–302 (2004)CrossRef J. Krc̆, M. Zeman, F. Smole, M. Topic̆, Optical modelling of thin-film silicon solar cells deposited on textured substrates. Thin Solid Films 451–452, 298–302 (2004)CrossRef
28.
Zurück zum Zitat L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, F. Orapunt, S.K. O’Leary, Influence of growth temperature on order within silicon films grown by ultrahigh-vacuum evaporation on silica. Appl. Phys. Lett. 88, 121920-1-3 (2006) L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, F. Orapunt, S.K. O’Leary, Influence of growth temperature on order within silicon films grown by ultrahigh-vacuum evaporation on silica. Appl. Phys. Lett. 88, 121920-1-3 (2006)
29.
Zurück zum Zitat D. Gracin, A. Gajović, K. Juraić, M. Čeh, Z. Remeš̆, A. Poruba, M. Vaněček, Spectral response of amorphous-nano-crystalline silicon thin films. J. Non-Cryst. Solids 354, 2286–2290 (2008)CrossRef D. Gracin, A. Gajović, K. Juraić, M. Čeh, Z. Remeš̆, A. Poruba, M. Vaněček, Spectral response of amorphous-nano-crystalline silicon thin films. J. Non-Cryst. Solids 354, 2286–2290 (2008)CrossRef
30.
Zurück zum Zitat J.J. Thevaril, S.K. O’Leary, Defect absorption and optical transitions in hydrogenated amorphous silicon. Solid State Commun. 150, 1851–1855 (2010)CrossRef J.J. Thevaril, S.K. O’Leary, Defect absorption and optical transitions in hydrogenated amorphous silicon. Solid State Commun. 150, 1851–1855 (2010)CrossRef
31.
Zurück zum Zitat J.J. Thevaril, S.K. O’Leary, The role that conduction band tail states play in determining the optical response of hydrogenated amorphous silicon. Solid State Commun. 151, 730–733 (2011)CrossRef J.J. Thevaril, S.K. O’Leary, The role that conduction band tail states play in determining the optical response of hydrogenated amorphous silicon. Solid State Commun. 151, 730–733 (2011)CrossRef
32.
Zurück zum Zitat M. Zeman, O. Isabella, S. Solntsev, K. Jäger, Modelling of thin-film silicon solar cells. Sol. Energy Mater. Sol. Cells 119, 94–111 (2013)CrossRef M. Zeman, O. Isabella, S. Solntsev, K. Jäger, Modelling of thin-film silicon solar cells. Sol. Energy Mater. Sol. Cells 119, 94–111 (2013)CrossRef
33.
Zurück zum Zitat F. Orapunt, L.L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, S.K. O’Leary, An amorphous-to-crystalline phase transition within thin silicon films grown by ultra-high-vacuum evaporation and its impact on the optical response. J. Appl. Phys. 119, 065702-1-12 (2016)CrossRef F. Orapunt, L.L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, S.K. O’Leary, An amorphous-to-crystalline phase transition within thin silicon films grown by ultra-high-vacuum evaporation and its impact on the optical response. J. Appl. Phys. 119, 065702-1-12 (2016)CrossRef
34.
Zurück zum Zitat J.J. Thevaril, S.K. O’Leary, A universal feature in the optical absorption spectrum associated with hydrogenated amorphous silicon: a dimensionless joint density of states analysis. J. Appl. Phys. 120, 135706-1-15 (2016)CrossRef J.J. Thevaril, S.K. O’Leary, A universal feature in the optical absorption spectrum associated with hydrogenated amorphous silicon: a dimensionless joint density of states analysis. J. Appl. Phys. 120, 135706-1-15 (2016)CrossRef
35.
Zurück zum Zitat X. Shen, Q. Wang, P. Wangyang, Broadband antireflection and light trapping in thin film silicon solar cells with hemisphere arrays. IEEE Photonics Technol. Lett. 28, 1477–1480 (2016)CrossRef X. Shen, Q. Wang, P. Wangyang, Broadband antireflection and light trapping in thin film silicon solar cells with hemisphere arrays. IEEE Photonics Technol. Lett. 28, 1477–1480 (2016)CrossRef
36.
Zurück zum Zitat A. Tamang, H. Sai, V. Jovanov, M.I. Hossain, K. Matsubara, D. Knipp, On the interplay of cell thickness and optimum period of silicon thin-film solar cells: light trapping and plasmonic losses. Prog. Photovolt. Res. Appl. 24, 379–388 (2016)CrossRef A. Tamang, H. Sai, V. Jovanov, M.I. Hossain, K. Matsubara, D. Knipp, On the interplay of cell thickness and optimum period of silicon thin-film solar cells: light trapping and plasmonic losses. Prog. Photovolt. Res. Appl. 24, 379–388 (2016)CrossRef
37.
Zurück zum Zitat C.-L. Lin, C.E. Wu, W.-C. Chiu, W.-L. Wu, J.-S. Yu, Optical properties of hydrogenated amorphous silicon thin-film transistor-based optical pixel sensor in three primary colors. IEEE J. Sel. Tops. Quant. Electron. 24, 6000108-1-8 (2018) C.-L. Lin, C.E. Wu, W.-C. Chiu, W.-L. Wu, J.-S. Yu, Optical properties of hydrogenated amorphous silicon thin-film transistor-based optical pixel sensor in three primary colors. IEEE J. Sel. Tops. Quant. Electron. 24, 6000108-1-8 (2018)
38.
Zurück zum Zitat S. Moghaddam, S.K. O’Leary, Empirical expressions for the spectral dependence of the refractive index for the case of thin-film silicon and some of its common alloys. J. Mater. Sci.: Mater. Electron. 30, 1637–1646 (2019) S. Moghaddam, S.K. O’Leary, Empirical expressions for the spectral dependence of the refractive index for the case of thin-film silicon and some of its common alloys. J. Mater. Sci.: Mater. Electron. 30, 1637–1646 (2019)
39.
Zurück zum Zitat W.B. Jackson, S.M. Kelso, C.C. Tsai, J.W. Allen, S.-J. Oh, Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon. Phys. Rev. B 31, 5187–5198 (1985)CrossRef W.B. Jackson, S.M. Kelso, C.C. Tsai, J.W. Allen, S.-J. Oh, Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon. Phys. Rev. B 31, 5187–5198 (1985)CrossRef
40.
Zurück zum Zitat G.E. Jellison Jr., F.A. Modine, Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 69, 371–373 (1996)CrossRef G.E. Jellison Jr., F.A. Modine, Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 69, 371–373 (1996)CrossRef
41.
Zurück zum Zitat L. Jiao, I. Chen, R.W. Collins, C.R. Wronski, N. Hata, An improved analysis for band edge optical absorption spectra in hydrogenated amorphous silicon from optical and photoconductivity measurements. Appl. Phys. Lett. 72, 1057–1059 (1998)CrossRef L. Jiao, I. Chen, R.W. Collins, C.R. Wronski, N. Hata, An improved analysis for band edge optical absorption spectra in hydrogenated amorphous silicon from optical and photoconductivity measurements. Appl. Phys. Lett. 72, 1057–1059 (1998)CrossRef
42.
Zurück zum Zitat S.K. O’Leary, An empirical density of states and joint density of states analysis of hydrogenated amorphous silicon: a review. J. Mater. Sci.: Mater. Electron. 15, 401–410 (2004) S.K. O’Leary, An empirical density of states and joint density of states analysis of hydrogenated amorphous silicon: a review. J. Mater. Sci.: Mater. Electron. 15, 401–410 (2004)
43.
Zurück zum Zitat S.K. O’Leary, S.R. Johnson, P.K. Lim, The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis. J. Appl. Phys. 82, 3334–3340 (1997)CrossRef S.K. O’Leary, S.R. Johnson, P.K. Lim, The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis. J. Appl. Phys. 82, 3334–3340 (1997)CrossRef
44.
Zurück zum Zitat S.K. O’Leary, S.M. Malik, A simplified joint density of states analysis of hydrogenated amorphous silicon. J. Appl. Phys. 92, 4276–4282 (2002)CrossRef S.K. O’Leary, S.M. Malik, A simplified joint density of states analysis of hydrogenated amorphous silicon. J. Appl. Phys. 92, 4276–4282 (2002)CrossRef
45.
Zurück zum Zitat S.K. O’Leary, An analytical density of states and joint density of states analysis of amorphous semiconductors. J. Appl. Phys. 96, 3680–3686 (2004)CrossRef S.K. O’Leary, An analytical density of states and joint density of states analysis of amorphous semiconductors. J. Appl. Phys. 96, 3680–3686 (2004)CrossRef
46.
Zurück zum Zitat J.J. Thevaril, S.K. O’Leary, A dimensionless joint density of states formalism for the quantitative characterization of the optical response of hydrogenated amorphous silicon. J. Appl. Phys. 107, 083105-1-6 (2010)CrossRef J.J. Thevaril, S.K. O’Leary, A dimensionless joint density of states formalism for the quantitative characterization of the optical response of hydrogenated amorphous silicon. J. Appl. Phys. 107, 083105-1-6 (2010)CrossRef
47.
Zurück zum Zitat S. Nunomura, I. Sakata, K. Matsubara, J. Non-Cryst. Solids 436, 44–50 (2016)CrossRef S. Nunomura, I. Sakata, K. Matsubara, J. Non-Cryst. Solids 436, 44–50 (2016)CrossRef
48.
Zurück zum Zitat J.R. Eggert, W. Paul, Midgap electroabsorption in amorphous silicon-based Schottky diodes. J. Non-Cryst. Solids 77 & 78, 559–562 (1985)CrossRef J.R. Eggert, W. Paul, Midgap electroabsorption in amorphous silicon-based Schottky diodes. J. Non-Cryst. Solids 77 & 78, 559–562 (1985)CrossRef
49.
Zurück zum Zitat I.M.P. Aarts, M.C.M. van de Sanden, W.M.M. Kessels, J. Non-Cryst. Solids 338–340, 408–411 (2004)CrossRef I.M.P. Aarts, M.C.M. van de Sanden, W.M.M. Kessels, J. Non-Cryst. Solids 338–340, 408–411 (2004)CrossRef
Metadaten
Titel
A re-examination of experimental evidence on the spectral dependence of the optical transition matrix element associated with thin-film silicon
verfasst von
Sanjida B. Minar
Saeed Moghaddam
Stephen K. O’Leary
Publikationsdatum
02.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 10/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01336-7

Weitere Artikel der Ausgabe 10/2019

Journal of Materials Science: Materials in Electronics 10/2019 Zur Ausgabe

Neuer Inhalt