Skip to main content

2024 | OriginalPaper | Buchkapitel

A Recommendation Algorithm Based on Automatic Meta-path Generation and Relationship Aggregation

verfasst von : Yuying Wang, Jing Zhou, Yifan Ji, Qian Liu, Jiaying Wei

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Knowledge Graph (KG) contains rich semantic information and supports knowledge reasoning. In recent years, introducing KG as auxiliary information into the recommender system has become one common measure for improving recommendation quality. The unified graph, which is constructed from the KG and user-item matrix in recommender systems, contains meta-paths formed by single-hop/continuous multi-hop connectivity relationships, and these meta-paths can assist modeling of user preferences. The quality of manually designed meta-paths is prone to the type and number of human-defined meta-paths. Moreover, the process of defining meta-paths is time-consuming and labor-intensive, and inadequate sufficient considerations in design will have an adverse impact on the quality of recommendations. We propose a self-supervised meta-path generation approach that does not rely on domain knowledge to select valuable path information from the unified graph and can deliver high-quality recommendations and reduce noises. Previous studies on meta-paths mainly focused on the neighbor information of nodes and ignored the edges that represents relationships between nodes. We develop a meta-path-based relational path-aware strategy to discover the relational information included within the meta-path. To make the use of the global structure in the unified graph and the information within the local scope in the user-item bipartite graph and KG, a two-level relationship aggregator to fully aggregate the fine-grained semantic information and multi-hop semantic associations is also proposed. We conducted experiments on two public datasets, MovieLens and Book-Crossing to verify the effectiveness of the proposed algorithm. The experimental results show that the recommendation algorithm outperforms the baseline models in terms of AUC, Recall@K, and F1 in most cases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.: A survey on knowledge graphs: representation, acquisition, and applications. Journal 33(2), 494–514 (2022)MathSciNet Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.: A survey on knowledge graphs: representation, acquisition, and applications. Journal 33(2), 494–514 (2022)MathSciNet
2.
Zurück zum Zitat Zou, D., et al.: Multi-level cross-view contrastive learning for knowledge-aware recommender system. In: 45th International ACM SIGIR Conference on Research and Development in Information Retrieval,pp.1358–1368. ACM, Madrid, Spain (2022) Zou, D., et al.: Multi-level cross-view contrastive learning for knowledge-aware recommender system. In: 45th International ACM SIGIR Conference on Research and Development in Information Retrieval,pp.1358–1368. ACM, Madrid, Spain (2022)
3.
Zurück zum Zitat Zou, D., et al.: Improving knowledge-aware recommendation with multi-level interactive contrastive learning. In: 31st ACM International Conference on Information and Knowledge Management, pp. 2817–2826. ACM, Atlanta, GA, USA (2022) Zou, D., et al.: Improving knowledge-aware recommendation with multi-level interactive contrastive learning. In: 31st ACM International Conference on Information and Knowledge Management, pp. 2817–2826. ACM, Atlanta, GA, USA (2022)
4.
Zurück zum Zitat Yu, X., Ren, X., Gu, Q., Sun, Y., Han, J.: Collaborative filtering with entity similarity regularization in heterogeneous information networks. Journal, 27 (2013) Yu, X., Ren, X., Gu, Q., Sun, Y., Han, J.: Collaborative filtering with entity similarity regularization in heterogeneous information networks. Journal, 27 (2013)
5.
Zurück zum Zitat Luo, C., Pang, W., Wang, Z., Lin, C.: Hete-CF: social-based collaborative filtering recommendation using heterogeneous relations. In: 2014 IEEE International Conference on Data Mining, pp. 917–922. IEEE Computer Society, Shenzhen, China (2014) Luo, C., Pang, W., Wang, Z., Lin, C.: Hete-CF: social-based collaborative filtering recommendation using heterogeneous relations. In: 2014 IEEE International Conference on Data Mining, pp. 917–922. IEEE Computer Society, Shenzhen, China (2014)
6.
Zurück zum Zitat Zhao, H., Yao, Q., Li, J., Song, Y., Lee, D.: Meta-graph based recommendation fusion over heterogeneous information networks. In: 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 635–644. ACM, Halifax, NS, Canada (2017) Zhao, H., Yao, Q., Li, J., Song, Y., Lee, D.: Meta-graph based recommendation fusion over heterogeneous information networks. In: 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 635–644. ACM, Halifax, NS, Canada (2017)
7.
Zurück zum Zitat Dong, Y., Chawla, N., Swami, A.: Metapath2Vec: scalable representation learning for heterogeneous networks. In: 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144. ACM, Halifax, NS, Canada (2017) Dong, Y., Chawla, N., Swami, A.: Metapath2Vec: scalable representation learning for heterogeneous networks. In: 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144. ACM, Halifax, NS, Canada (2017)
8.
Zurück zum Zitat Hu, B., Shi, C., Zhao, W., Yu, P.: Leveraging meta-path based context for top-N recommendation with a neural co-attention model. In: 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1531–1540. ACM, London, UK (2018) Hu, B., Shi, C., Zhao, W., Yu, P.: Leveraging meta-path based context for top-N recommendation with a neural co-attention model. In: 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1531–1540. ACM, London, UK (2018)
9.
Zurück zum Zitat Yun, S., et al.: Graph transformer networks: learning meta-path graphs to improve GNNs. Journal 153, 104–119 (2022) Yun, S., et al.: Graph transformer networks: learning meta-path graphs to improve GNNs. Journal 153, 104–119 (2022)
10.
Zurück zum Zitat Wang, X., He, X., Cao, Y., Liu, M., Chua, T.: KGAT: knowledge graph attention network for recommendation. In: 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 950–958. ACM, Anchorage, AK, USA (2019) Wang, X., He, X., Cao, Y., Liu, M., Chua, T.: KGAT: knowledge graph attention network for recommendation. In: 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 950–958. ACM, Anchorage, AK, USA (2019)
11.
Zurück zum Zitat Wang, H., Zhao, M., Xie, X., Li, W., Guo, M.: Knowledge graph convolutional networks for recommender systems. In: The World Wide Web Conference, pp. 3307–3313. ACM, San Francisco, CA, USA (2019) Wang, H., Zhao, M., Xie, X., Li, W., Guo, M.: Knowledge graph convolutional networks for recommender systems. In: The World Wide Web Conference, pp. 3307–3313. ACM, San Francisco, CA, USA (2019)
12.
Zurück zum Zitat Wang, X., Wang, D., Xu, C., He, X., Cao, Y., Chua, T.: Explainable reasoning over knowledge graphs for recommendation. In: 33rd AAAI Conference on Artificial Intelligence, pp. 5329–5336. AAAI Press, Honolulu, Hawaii, USA (2019) Wang, X., Wang, D., Xu, C., He, X., Cao, Y., Chua, T.: Explainable reasoning over knowledge graphs for recommendation. In: 33rd AAAI Conference on Artificial Intelligence, pp. 5329–5336. AAAI Press, Honolulu, Hawaii, USA (2019)
13.
Zurück zum Zitat Grover, A., Leskovec, J.: Node2Vec: scalable feature learning for networks. In: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data mining, pp. 855–864. ACM, San Francisco, CA, USA (2016) Grover, A., Leskovec, J.: Node2Vec: scalable feature learning for networks. In: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data mining, pp. 855–864. ACM, San Francisco, CA, USA (2016)
14.
Zurück zum Zitat Rendle, S., Freudenthaler, C., Gantner, Z., Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: 25th Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press, Montreal, QC, Canada (2009) Rendle, S., Freudenthaler, C., Gantner, Z., Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: 25th Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press, Montreal, QC, Canada (2009)
15.
Zurück zum Zitat Zhang, F., Yuan, N., Lian, D., Xie, X., Ma, W.: Collaborative knowledge base embedding for recommender systems. In: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 353–362. ACM, San Francisco, CA, USA (2016) Zhang, F., Yuan, N., Lian, D., Xie, X., Ma, W.: Collaborative knowledge base embedding for recommender systems. In: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 353–362. ACM, San Francisco, CA, USA (2016)
Metadaten
Titel
A Recommendation Algorithm Based on Automatic Meta-path Generation and Relationship Aggregation
verfasst von
Yuying Wang
Jing Zhou
Yifan Ji
Qian Liu
Jiaying Wei
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_27