1.
Buzydlowski, J.W., Lin, X., Zhang, M., Cassel, L.N.: A comparison of a hierarchical tree to an associative map interface for the selection of classification terms. Proc. Am. Soc. IST
50(1), 1–4 (2013)
2.
Felder, R.M., Brent, R.: Understanding student differences. J. Eng. Educ.
94(1), 57–72 (2005)
CrossRef
3.
Fu, X., Budzik, J., Hammond, K.J.: Mining navigation history for recommendation. In: Proceedings of IC on Intelligent UI, pp. 106–112. ACM (2000)
4.
Fung, B.C., Wang, K., Ester, M.: Hierarchical document clustering using frequent itemsets. In: Proceedings of IC on Data Mining, pp. 59–70. SIAM (2003)
5.
Gomez-Uribe, C.A., Hunt, N.: The netflix recommender system: algorithms, business value, and innovation. ACM TMIS
6(4), 13 (2016)
6.
Jabakji, A., Dag, H.: Improving item-based recommendation accuracy with user’s preferences on apache mahout. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 1742–1749. IEEE (2016)
7.
Li, X., Chang, S.K.: A personalized e-learning system based on user profile constructed using information fusion. In: DMS, pp. 109–114 (2005)
8.
Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput.
7(1), 76–80 (2003)
CrossRef
9.
Lu, J.: Personalized e-learning material recommender system. In: IC on information technology for application, pp. 374–379 (2004)
10.
Pireva, K., Kefalas, P., Cowling, A.: A Review of Automated Planning and its Application to Cloud e-Learning. Work in progress, Paper Submitted (2017)
11.
Pireva, K., Kefalas, P., Stamatopoulou, I.: Representation of Learning Objects in Cloud e-Learning. Work in progress, Paper Submitted (2017)
12.
Pireva, K., Kefalas, P.: The use of multi agent systems in cloud e-learning. In: Doctoral Student Conference on ICT, pp. 324–336 (2015)
13.
Polettini, N.: The vector space model in information retrieval-term weighting problem. Entropy, 1–9 (2004)
14.
Portugal, I., Alencar, P., Cowan, D.: The use of machine learning algorithms in recommender systems: a systematic review (2015).
arXiv:1511.05263
15.
Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. Springer (2011)
16.
Rokach, L., Maimon, O.: Clustering Methods. In: Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer (2005)
17.
Schafer, J.B., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In: Proceedings of Conference on Electronic Commerce, pp. 158–166. ACM (1999)
18.
Singh, V.K., Singh, V.K.: Vector space model: an information retrieval system. Int. J. Adv. Eng. Res. Stud.
141, 143 (2015)
19.
Stern, D.H., Herbrich, R., Graepel, T.: Matchbox: large scale online bayesian recommendations. In: Proceedings of IC on WWW, pp. 111–120. ACM (2009)
20.
Willett, P.: The porter stemming algorithm: then and now. Program
40(3), 219–223 (2006)
CrossRef