Skip to main content
Erschienen in: Journal of Scientific Computing 1/2016

25.03.2015

A Reduced Radial Basis Function Method for Partial Differential Equations on Irregular Domains

verfasst von: Yanlai Chen, Sigal Gottlieb, Alfa Heryudono, Akil Narayan

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose and test the first Reduced Radial Basis Function Method for solving parametric partial differential equations on irregular domains. The two major ingredients are a stable Radial Basis Function (RBF) solver that has an optimized set of centers chosen through a reduced-basis-type greedy algorithm, and a collocation-based model reduction approach that systematically generates a reduced-order approximation whose dimension is orders of magnitude smaller than the total number of RBF centers. The resulting algorithm is efficient and accurate as demonstrated through two- and three-dimensional test problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Almroth, B.O., Stern, P., Brogan, F.A.: Automatic choice of global shape functions in structural analysis. AIAA J. 16, 525–528 (1978)CrossRef Almroth, B.O., Stern, P., Brogan, F.A.: Automatic choice of global shape functions in structural analysis. AIAA J. 16, 525–528 (1978)CrossRef
2.
Zurück zum Zitat Balmes, E.: Parametric families of reduced finite element models: theory and applications. Mach. Syst. Signal Process. 10(4), 381–394 (1996)CrossRef Balmes, E.: Parametric families of reduced finite element models: theory and applications. Mach. Syst. Signal Process. 10(4), 381–394 (1996)CrossRef
3.
Zurück zum Zitat Barrault, M., Nguyen, N.C., Maday, Y., Patera, A.T.: An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris Sér I 339, 667–672 (2004)MathSciNetCrossRefMATH Barrault, M., Nguyen, N.C., Maday, Y., Patera, A.T.: An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris Sér I 339, 667–672 (2004)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Bayona, V., Moscoso, M., Kindelan, M.: Optimal constant shape parameter for multiquadric based RBF-FD method. J. Comput. Phys. 230(19), 7384–7399 (2011)MathSciNetCrossRefMATH Bayona, V., Moscoso, M., Kindelan, M.: Optimal constant shape parameter for multiquadric based RBF-FD method. J. Comput. Phys. 230(19), 7384–7399 (2011)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Bayona, V., Moscoso, M., Kindelan, M.: Gaussian RBF-FD weights and its corresponding local truncation errors. Eng. Anal. Bound. Elem. 36(9), 1361–1369 (2012)MathSciNetCrossRef Bayona, V., Moscoso, M., Kindelan, M.: Gaussian RBF-FD weights and its corresponding local truncation errors. Eng. Anal. Bound. Elem. 36(9), 1361–1369 (2012)MathSciNetCrossRef
7.
Zurück zum Zitat Binev, P., Cohen, A., Dahmen, W., Devore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43, 1457–1472 (2011)MathSciNetCrossRefMATH Binev, P., Cohen, A., Dahmen, W., Devore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43, 1457–1472 (2011)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Buffa, A., Maday, Y., Patera, A.T., Prud’homme, C., Turinici, G.: A priori convergence of the greedy algorithm for the parametrized reduced basis. ESAIM Math. Model. Numer. Anal. 46, 595–603 (2011). (Special Issue in honor of David Gottlieb)MathSciNetCrossRef Buffa, A., Maday, Y., Patera, A.T., Prud’homme, C., Turinici, G.: A priori convergence of the greedy algorithm for the parametrized reduced basis. ESAIM Math. Model. Numer. Anal. 46, 595–603 (2011). (Special Issue in honor of David Gottlieb)MathSciNetCrossRef
9.
Zurück zum Zitat Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003)CrossRef Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003)CrossRef
10.
Zurück zum Zitat Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242, 623–647 (2013)MathSciNetCrossRefMATH Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242, 623–647 (2013)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Cavoretto, R., Fasshauer, G.E., McCourt, M.: An introduction to the Hilbert-Schmidt SVD using iterated Brownian bridge kernels. Numer. Algorithms 68(2), 393–422 (2015)MathSciNetCrossRefMATH Cavoretto, R., Fasshauer, G.E., McCourt, M.: An introduction to the Hilbert-Schmidt SVD using iterated Brownian bridge kernels. Numer. Algorithms 68(2), 393–422 (2015)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Chen, Y., Gottlieb, S.: Reduced collocation methods: reduced basis methods in the collocation framework. J. Sci. Comput. 55(3), 718–737 (2013)MathSciNetCrossRefMATH Chen, Y., Gottlieb, S.: Reduced collocation methods: reduced basis methods in the collocation framework. J. Sci. Comput. 55(3), 718–737 (2013)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Chen, Y., Gottlieb, S., Maday, Y.: Parametric analytical preconditioning and its applications to the reduced collocation methods. C. R. Math. 352(7–8), 661–666 (2014)MathSciNetCrossRefMATH Chen, Y., Gottlieb, S., Maday, Y.: Parametric analytical preconditioning and its applications to the reduced collocation methods. C. R. Math. 352(7–8), 661–666 (2014)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Chen, Y., Hesthaven, J.S., Maday, Y., Rodríguez, J.: Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2d Maxwell’s problem. Math. Modell. Numer. Anal. 43, 1099–1116 (2009)CrossRefMATH Chen, Y., Hesthaven, J.S., Maday, Y., Rodríguez, J.: Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2d Maxwell’s problem. Math. Modell. Numer. Anal. 43, 1099–1116 (2009)CrossRefMATH
15.
Zurück zum Zitat Chen, Y., Hesthaven, J.S., Maday, Y., Rodríguez, J.: Certified reduced basis methods and output bounds for the harmonic Maxwell’s equations. SIAM J. Sci. Comput. 32(2), 970–996 (2010)MathSciNetCrossRefMATH Chen, Y., Hesthaven, J.S., Maday, Y., Rodríguez, J.: Certified reduced basis methods and output bounds for the harmonic Maxwell’s equations. SIAM J. Sci. Comput. 32(2), 970–996 (2010)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Driscoll, T., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43, 413–422 (2002)MathSciNetCrossRefMATH Driscoll, T., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43, 413–422 (2002)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34(2), A937–A969 (2012)MathSciNetCrossRefMATH Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34(2), A937–A969 (2012)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34(2), A737–A762 (2012)MathSciNetCrossRefMATH Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34(2), A737–A762 (2012)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Fasshauer, G.E.: Meshfree approximation methods with MATLAB, Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ: With 1 CD-ROM. (Windows, Macintosh and UNIX) (2007) Fasshauer, G.E.: Meshfree approximation methods with MATLAB, Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ: With 1 CD-ROM. (Windows, Macintosh and UNIX) (2007)
20.
Zurück zum Zitat Fink, J.P., Rheinboldt, W.C.: On the error behavior of the reduced basis technique for nonlinear finite element approximations. Z. Angew. Math. Mech. 63(1), 21–28 (1983)MathSciNetCrossRefMATH Fink, J.P., Rheinboldt, W.C.: On the error behavior of the reduced basis technique for nonlinear finite element approximations. Z. Angew. Math. Mech. 63(1), 21–28 (1983)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)MathSciNetCrossRefMATH Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Fornberg, B., Lehto, E.: Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys. 230(6), 2270–2285 (2011)MathSciNetCrossRefMATH Fornberg, B., Lehto, E.: Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys. 230(6), 2270–2285 (2011)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput. Math. Appl. 65(4), 627–637 (2013)MathSciNetCrossRef Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput. Math. Appl. 65(4), 627–637 (2013)MathSciNetCrossRef
24.
Zurück zum Zitat Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2008)MathSciNetCrossRef Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2008)MathSciNetCrossRef
25.
Zurück zum Zitat Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48(5–6), 853–867 (2004)MathSciNetCrossRefMATH Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48(5–6), 853–867 (2004)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Gonnet, P., Pachón, R., Trefethen, L.N.: Robust rational interpolation and least-squares. Electron. Trans. Numer. Anal. 38, 146–167 (2011)MathSciNetMATH Gonnet, P., Pachón, R., Trefethen, L.N.: Robust rational interpolation and least-squares. Electron. Trans. Numer. Anal. 38, 146–167 (2011)MathSciNetMATH
27.
Zurück zum Zitat Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. Math. Modell. Numer. Anal. 41(3), 575–605 (2007)MathSciNetCrossRefMATH Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. Math. Modell. Numer. Anal. 41(3), 575–605 (2007)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. Math. Model. Numer. Anal. 39(1), 157–181 (2005)MathSciNetCrossRefMATH Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. Math. Model. Numer. Anal. 39(1), 157–181 (2005)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. Math. Model. Numer. Anal. 42(2), 277–302 (2008)MathSciNetCrossRefMATH Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. Math. Model. Numer. Anal. 42(2), 277–302 (2008)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems, Cambridge Monographs on Applied and Computational Mathematics, vol. 21. Cambridge University Press, Cambridge (2007) Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems, Cambridge Monographs on Applied and Computational Mathematics, vol. 21. Cambridge University Press, Cambridge (2007)
31.
Zurück zum Zitat Huynh, D.B.P., Knezevic, D.J., Chen, Y., Hesthaven, J.S., Patera, A.T.: A natural-norm successive constraint method for inf-sup lower bounds. Comput. Methods Appl. Mech. Eng. 199, 1963–1975 (2010)MathSciNetCrossRefMATH Huynh, D.B.P., Knezevic, D.J., Chen, Y., Hesthaven, J.S., Patera, A.T.: A natural-norm successive constraint method for inf-sup lower bounds. Comput. Methods Appl. Mech. Eng. 199, 1963–1975 (2010)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Huynh, D.B.P., Rozza, G., Sen, S., Patera, A.T.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Acad. Sci. Paris Sér I. 345, 473–478 (2007)MathSciNetCrossRefMATH Huynh, D.B.P., Rozza, G., Sen, S., Patera, A.T.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Acad. Sci. Paris Sér I. 345, 473–478 (2007)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics I: surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8/9), 127–145 (1990)MathSciNetCrossRefMATH Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics I: surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8/9), 127–145 (1990)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics II: solutions to parabolic, hyperbolic, and elliptic partial differential equations. Comput. Math. Appl. 19(8/9), 147–161 (1990)MathSciNetCrossRefMATH Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics II: solutions to parabolic, hyperbolic, and elliptic partial differential equations. Comput. Math. Appl. 19(8/9), 147–161 (1990)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46(5–6), 891–902 (2003)MathSciNetCrossRefMATH Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46(5–6), 891–902 (2003)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–A2119 (2013)MathSciNetCrossRefMATH Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–A2119 (2013)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Maday, Y., Patera, A.T., Turinici, G.: A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J. Sci. Comput. 17, 437–446 (2002)MathSciNetCrossRefMATH Maday, Y., Patera, A.T., Turinici, G.: A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J. Sci. Comput. 17, 437–446 (2002)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Marchi, S.D., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comput. Math. 23(3), 317–330 (2005)MathSciNetCrossRefMATH Marchi, S.D., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comput. Math. 23(3), 317–330 (2005)MathSciNetCrossRefMATH
39.
40.
Zurück zum Zitat Micchelli, C.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2, 11–22 (1986)MathSciNetCrossRefMATH Micchelli, C.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2, 11–22 (1986)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Nagy, D.A.: Modal representation of geometrically nonlinear behaviour by the finite element method. Comput. Struct. 10, 683–688 (1979)CrossRefMATH Nagy, D.A.: Modal representation of geometrically nonlinear behaviour by the finite element method. Comput. Struct. 10, 683–688 (1979)CrossRefMATH
42.
Zurück zum Zitat Nguyen, N.C., Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for parametrized parabolic pdes; application to real-time bayesian parameter estimation. In: Biegler, L., Biros, G., Ghattas, O., Heinkenschloss, M., Keyes, D., Mallick, B., Marzouk, Y., Tenorio, L., van Bloemen Waanders, B., Willcox, K. (eds.) Large-Scale Inverse Problems and Quantification of Uncertainty. Wiley, New York (2010) Nguyen, N.C., Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for parametrized parabolic pdes; application to real-time bayesian parameter estimation. In: Biegler, L., Biros, G., Ghattas, O., Heinkenschloss, M., Keyes, D., Mallick, B., Marzouk, Y., Tenorio, L., van Bloemen Waanders, B., Willcox, K. (eds.) Large-Scale Inverse Problems and Quantification of Uncertainty. Wiley, New York (2010)
43.
Zurück zum Zitat Noor, A.K., Peters, J.M.: Reduced basis technique for nonlinear analysis of structures. AIAA J. 18(4), 455–462 (1980)CrossRef Noor, A.K., Peters, J.M.: Reduced basis technique for nonlinear analysis of structures. AIAA J. 18(4), 455–462 (1980)CrossRef
44.
Zurück zum Zitat Peterson, J.S.: The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10(4), 777–786 (1989)CrossRefMATH Peterson, J.S.: The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10(4), 777–786 (1989)CrossRefMATH
45.
Zurück zum Zitat Platte, R.B., Trefethen, L.N., Kuijlaars, A.B.J.: Impossibility of fast stable approximation of analytic functions from equispaced samples. SIAM Rev. 53(2), 308–318 (2011)MathSciNetCrossRefMATH Platte, R.B., Trefethen, L.N., Kuijlaars, A.B.J.: Impossibility of fast stable approximation of analytic functions from equispaced samples. SIAM Rev. 53(2), 308–318 (2011)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Platte, R.B.: How fast do radial basis function interpolants of analytic functions converge? IMA J. Numer. Anal. 31(4), 1578–1597 (2011)MathSciNetCrossRefMATH Platte, R.B.: How fast do radial basis function interpolants of analytic functions converge? IMA J. Numer. Anal. 31(4), 1578–1597 (2011)MathSciNetCrossRefMATH
47.
Zurück zum Zitat Platte, R.B., Driscoll, T.A.: Polynomials and potential theory for Gaussian radial basis function interpolation. SIAM J. Numer. Anal. 43(2), 750–766 (2005). (electronic)MathSciNetCrossRefMATH Platte, R.B., Driscoll, T.A.: Polynomials and potential theory for Gaussian radial basis function interpolation. SIAM J. Numer. Anal. 43(2), 750–766 (2005). (electronic)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Porsching, T.A.: Estimation of the error in the reduced basis method solution of nonlinear equations. Math. Comput. 45(172), 487–496 (1985)MathSciNetCrossRefMATH Porsching, T.A.: Estimation of the error in the reduced basis method solution of nonlinear equations. Math. Comput. 45(172), 487–496 (1985)MathSciNetCrossRefMATH
49.
Zurück zum Zitat Prud’homme, C., Rovas, D., Veroy, K., Maday, Y., Patera, A.T., Turinici, G.: Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J. Fluids Eng. 124(1), 70–80 (2002)CrossRef Prud’homme, C., Rovas, D., Veroy, K., Maday, Y., Patera, A.T., Turinici, G.: Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J. Fluids Eng. 124(1), 70–80 (2002)CrossRef
50.
Zurück zum Zitat Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)MathSciNetCrossRefMATH Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)MathSciNetCrossRefMATH
51.
Zurück zum Zitat Shen, J., Tang, T.: Spectral and High-Order Methods with Applications, Mathematics Monograph Series, vol. 3. Science Press Beijing, Beijing (2006) Shen, J., Tang, T.: Spectral and High-Order Methods with Applications, Mathematics Monograph Series, vol. 3. Science Press Beijing, Beijing (2006)
52.
Zurück zum Zitat Shu, C., Ding, H., Yeo, K.S.: Computation of incompressible Navier–Stokes equations by local RBF-based differential quadrature method. CMES Comput. Model. Eng. Sci. 7(2), 195–205 (2005)MathSciNetMATH Shu, C., Ding, H., Yeo, K.S.: Computation of incompressible Navier–Stokes equations by local RBF-based differential quadrature method. CMES Comput. Model. Eng. Sci. 7(2), 195–205 (2005)MathSciNetMATH
53.
Zurück zum Zitat Tolstykh, A.I., Shirobokov, D.A.: On using radial basis functions in a “finite difference mode” with applications to elasticity problems. Comput. Mech. 33(1), 68–79 (2003)MathSciNetCrossRefMATH Tolstykh, A.I., Shirobokov, D.A.: On using radial basis functions in a “finite difference mode” with applications to elasticity problems. Comput. Mech. 33(1), 68–79 (2003)MathSciNetCrossRefMATH
54.
Zurück zum Zitat Trefethen, L.N.: Spectral Methods in MATLAB, Software, Environments, and Tools, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)CrossRef Trefethen, L.N.: Spectral Methods in MATLAB, Software, Environments, and Tools, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)CrossRef
55.
Zurück zum Zitat Urban, K., Patera, A.T.: An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83(288), 1599–1615 (2014)MathSciNetCrossRefMATH Urban, K., Patera, A.T.: An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83(288), 1599–1615 (2014)MathSciNetCrossRefMATH
56.
Zurück zum Zitat Veroy, K., Prud’homme, C., Patera, A.T.: Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds. C. R. Acad. Sci. Paris Sér I 337(9), 619–624 (2003)MathSciNetCrossRefMATH Veroy, K., Prud’homme, C., Patera, A.T.: Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds. C. R. Acad. Sci. Paris Sér I 337(9), 619–624 (2003)MathSciNetCrossRefMATH
57.
Zurück zum Zitat Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(4), 389–396 (1995)MathSciNetCrossRefMATH Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(4), 389–396 (1995)MathSciNetCrossRefMATH
58.
Zurück zum Zitat Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005) Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)
59.
Zurück zum Zitat Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212(1), 99–123 (2006)MathSciNetCrossRefMATH Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212(1), 99–123 (2006)MathSciNetCrossRefMATH
60.
Zurück zum Zitat Yano, M., Patera, A.T.: A space–time variational approach to hydrodynamic stability theory. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469(2155), 20130036 (2013)MathSciNetCrossRef Yano, M., Patera, A.T.: A space–time variational approach to hydrodynamic stability theory. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469(2155), 20130036 (2013)MathSciNetCrossRef
61.
Zurück zum Zitat Yano, M., Patera, Anthony T., Urban, K.: A space–time \(hp\)-interpolation-based certified reduced basis method for Burgers’ equation. Math. Models Methods Appl. Sci. 24(9), 1903–1935 (2014)MathSciNetCrossRefMATH Yano, M., Patera, Anthony T., Urban, K.: A space–time \(hp\)-interpolation-based certified reduced basis method for Burgers’ equation. Math. Models Methods Appl. Sci. 24(9), 1903–1935 (2014)MathSciNetCrossRefMATH
Metadaten
Titel
A Reduced Radial Basis Function Method for Partial Differential Equations on Irregular Domains
verfasst von
Yanlai Chen
Sigal Gottlieb
Alfa Heryudono
Akil Narayan
Publikationsdatum
25.03.2015
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2016
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-015-0013-8

Weitere Artikel der Ausgabe 1/2016

Journal of Scientific Computing 1/2016 Zur Ausgabe