Zum Inhalt

A Reinforcement Learning Implementation for a Scheduling Problem

  • 2025
  • OriginalPaper
  • Buchkapitel
Erschienen in:

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dieses Kapitel befasst sich mit der Anwendung von Verstärkungslernen, um Probleme bei der Terminplanung zu lösen, wobei der Schwerpunkt auf der Minimierung der totalen Verzögerung bei der einmaschigen Auftragsverarbeitung liegt. Die Studie stellt ein Q-Learning-Modell vor, das die Methodik zur Definition von Staaten, Maßnahmen und Belohnungen detailliert. Es untersucht auch die Integration maschineller Lerntechniken in die Planung von Problemen und unterstreicht das wachsende Interesse an verstärktem Lernen für komplexe Aufgaben. Die experimentellen Ergebnisse vergleichen den Q-Learning-Algorithmus mit dem Tabu-Suchalgorithmus und zeigen die überlegene Leistung und Effizienz von Ersterem. Die Studie endet mit einer Diskussion über zukünftige Forschungsmöglichkeiten, einschließlich des Potenzials von komplexeren Lernmethoden zur Verstärkung und fortgeschrittenen Deep-Learning-Architekturen.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Titel
A Reinforcement Learning Implementation for a Scheduling Problem
Verfasst von
Jaber El Menchoul
Hatem Hadda
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-032-04742-7_16
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise
    MKVS GbR/© MKVS GbR, Nordson/© Nordson, ViscoTec/© ViscoTec, BCD Chemie GmbH, Merz+Benteli/© Merz+Benteli, Robatech/© Robatech, Hermann Otto GmbH/© Hermann Otto GmbH, Ruderer Klebetechnik GmbH, Xometry Europe GmbH/© Xometry Europe GmbH, Atlas Copco/© Atlas Copco, Sika/© Sika, Medmix/© Medmix, Kisling AG/© Kisling AG, Dosmatix GmbH/© Dosmatix GmbH, Innotech GmbH/© Innotech GmbH, Hilger u. Kern GmbH, VDI Logo/© VDI Wissensforum GmbH, Dr. Fritz Faulhaber GmbH & Co. KG/© Dr. Fritz Faulhaber GmbH & Co. KG, ECHTERHAGE HOLDING GMBH&CO.KG - VSE, mta robotics AG/© mta robotics AG, Bühnen