Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 8/2018

01.06.2018 | Review Article

A review of anisotropic conductivity models of brain white matter based on diffusion tensor imaging

verfasst von: Zhanxiong Wu, Yang Liu, Ming Hong, Xiaohui Yu

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The conductivity of brain tissues is not only essential for electromagnetic source estimation (ESI), but also a key reflector of the brain functional changes. Different from the other brain tissues, the conductivity of whiter matter (WM) is highly anisotropic and a tensor is needed to describe it. The traditional electrical property imaging methods, such as electrical impedance tomography (EIT) and magnetic resonance electrical impedance tomography (MREIT), usually fail to image the anisotropic conductivity tensor of WM with high spatial resolution. The diffusion tensor imaging (DTI) is a newly developed technique that can fulfill this purpose. This paper reviews the existing anisotropic conductivity models of WM based on the DTI and discusses their advantages and disadvantages, as well as identifies opportunities for future research on this subject. It is crucial to obtain the linear conversion coefficient between the eigenvalues of anisotropic conductivity tensor and diffusion tensor, since they share the same eigenvectors. We conclude that the electrochemical model is suitable for ESI analysis because the conversion coefficient can be directly obtained from the concentration of ions in extracellular liquid and that the volume fraction model is appropriate to study the influence of WM structural changes on electrical conductivity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Jamal W, Das S, Maharatna K, Pan I, Kuyucu D (2015) Brain connectivity analysis from EEG signals using stable phase-synchronized states during face perception tasks. Physica A 434:273–295CrossRef Jamal W, Das S, Maharatna K, Pan I, Kuyucu D (2015) Brain connectivity analysis from EEG signals using stable phase-synchronized states during face perception tasks. Physica A 434:273–295CrossRef
3.
Zurück zum Zitat Haueisen J, Tuch DS, Ramon C, Schimpfd PH, Wedeenb VJ, Georgee JS, Belliveau JW (2002) The influence of brain tissue anisotropy on human EEG and MEG. NeuroImage 15(1):159–166CrossRefPubMed Haueisen J, Tuch DS, Ramon C, Schimpfd PH, Wedeenb VJ, Georgee JS, Belliveau JW (2002) The influence of brain tissue anisotropy on human EEG and MEG. NeuroImage 15(1):159–166CrossRefPubMed
4.
Zurück zum Zitat Wu ZX, Zhu SA, He B (2009) Effects of brain white matter anisotropic conductivity on distribution of EEG calculated with finite element method based on diffusion tensor image. Space Med Med Eng 22(6):433–436 Wu ZX, Zhu SA, He B (2009) Effects of brain white matter anisotropic conductivity on distribution of EEG calculated with finite element method based on diffusion tensor image. Space Med Med Eng 22(6):433–436
5.
Zurück zum Zitat Arkhtari M, Byrant HC, Mamelak AN, Flynn ER (2002) Conductivities of three-layer live human skull. Brain Topogr 14(3):151–167CrossRef Arkhtari M, Byrant HC, Mamelak AN, Flynn ER (2002) Conductivities of three-layer live human skull. Brain Topogr 14(3):151–167CrossRef
6.
Zurück zum Zitat Odabaee M, Tokariev A, Layeghy S, Mesbah M, Colditz PB, Ramon G, Vanhatalo S (2014) Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models. NeuroImage 96:73–80CrossRefPubMed Odabaee M, Tokariev A, Layeghy S, Mesbah M, Colditz PB, Ramon G, Vanhatalo S (2014) Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models. NeuroImage 96:73–80CrossRefPubMed
7.
8.
Zurück zum Zitat Hoekema R, Wieneke GH, Leijten FSS, van Veelen CWM, van Rijen PC, Huiskamp GJM, Ansems J, van Huffelen AC (2003) Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain Topogr 16(1):29–38CrossRefPubMed Hoekema R, Wieneke GH, Leijten FSS, van Veelen CWM, van Rijen PC, Huiskamp GJM, Ansems J, van Huffelen AC (2003) Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain Topogr 16(1):29–38CrossRefPubMed
9.
Zurück zum Zitat Güllmar D, Haueisen J, Reichenbach JR (2010) Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study. NeuroImage 51(1):145–163CrossRefPubMed Güllmar D, Haueisen J, Reichenbach JR (2010) Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study. NeuroImage 51(1):145–163CrossRefPubMed
11.
Zurück zum Zitat Wendel K, Väisänen O, Malmivuo J et al (2009) EEG/MEG source imaging: methods, challenges, and open issues. Comput Intel Neurosc 2009:656092CrossRef Wendel K, Väisänen O, Malmivuo J et al (2009) EEG/MEG source imaging: methods, challenges, and open issues. Comput Intel Neurosc 2009:656092CrossRef
12.
Zurück zum Zitat Åström M, Lemaire JJ, Wårdell K (2012) Influence of heterogeneous and anisotropic tissue conductivity on electric field distribution in deep brain stimulation. Med Biol Eng Comput 50(1):23–32CrossRefPubMed Åström M, Lemaire JJ, Wårdell K (2012) Influence of heterogeneous and anisotropic tissue conductivity on electric field distribution in deep brain stimulation. Med Biol Eng Comput 50(1):23–32CrossRefPubMed
13.
Zurück zum Zitat Lee WH, Liu Z, Mueller BA, Lim K, He B (2009) Influence of white matter anisotropic conductivity on EEG source localization: comparison to fMRI in human primary visual cortex. Clin Neurophysiol 120(12):2071–2081CrossRefPubMedPubMedCentral Lee WH, Liu Z, Mueller BA, Lim K, He B (2009) Influence of white matter anisotropic conductivity on EEG source localization: comparison to fMRI in human primary visual cortex. Clin Neurophysiol 120(12):2071–2081CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Mamata H, De Girolami U, Hoge WS, Jolesz FA, Maier SE (2006) Collateral nerve fibers in human spinal cord: visualization with magnetic resonance diffusion tensor imaging. NeuroImage 31(1):24–30CrossRefPubMed Mamata H, De Girolami U, Hoge WS, Jolesz FA, Maier SE (2006) Collateral nerve fibers in human spinal cord: visualization with magnetic resonance diffusion tensor imaging. NeuroImage 31(1):24–30CrossRefPubMed
15.
Zurück zum Zitat Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41(11):2231–2249CrossRefPubMed Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41(11):2231–2249CrossRefPubMed
16.
Zurück zum Zitat Baumann SB, Wozny DR, Kelly SK, Meno FM (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44(3):220–223CrossRefPubMed Baumann SB, Wozny DR, Kelly SK, Meno FM (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44(3):220–223CrossRefPubMed
17.
18.
Zurück zum Zitat Seo JK, Pyo HC, Park C, Kwon O, Woo EJ (2004) Image reconstruction of anisotropic conductivity tensor distribution in MREIT: computer simulation study. Phys Med Biol 49(18):4371–4382CrossRefPubMed Seo JK, Pyo HC, Park C, Kwon O, Woo EJ (2004) Image reconstruction of anisotropic conductivity tensor distribution in MREIT: computer simulation study. Phys Med Biol 49(18):4371–4382CrossRefPubMed
19.
Zurück zum Zitat Sajib SZK, Kim JE, Jeong WC, Kwon OI, Woo EJ (2015) Reconstruction of apparent orthotropic conductivity tensor image using magnetic resonance electrical impedance tomography. J Appl Phys 117:1047011–10470111CrossRef Sajib SZK, Kim JE, Jeong WC, Kwon OI, Woo EJ (2015) Reconstruction of apparent orthotropic conductivity tensor image using magnetic resonance electrical impedance tomography. J Appl Phys 117:1047011–10470111CrossRef
20.
Zurück zum Zitat Koessler L, Colnat-Coulbois S, Cecchin T, Hofmanis J, Dmochowski JP, Norcia AM, Maillard LG (2017) In-vivo measurements of human brain tissue conductivity using focal electrical current injection through intracerebral multicontact electrodes. Hum Brain Mapp 38(2):974–986CrossRefPubMed Koessler L, Colnat-Coulbois S, Cecchin T, Hofmanis J, Dmochowski JP, Norcia AM, Maillard LG (2017) In-vivo measurements of human brain tissue conductivity using focal electrical current injection through intracerebral multicontact electrodes. Hum Brain Mapp 38(2):974–986CrossRefPubMed
21.
Zurück zum Zitat Liston A, Bayford R, Holder D (2012) A cable theory based biophysical model of resistance change in crab peripheral nerve and human cerebral cortex during neuronal depolarisation: implications for electrical impedance tomography of fast neural activity in the brain. Med Biol Eng Comput 50(5):425–437CrossRefPubMed Liston A, Bayford R, Holder D (2012) A cable theory based biophysical model of resistance change in crab peripheral nerve and human cerebral cortex during neuronal depolarisation: implications for electrical impedance tomography of fast neural activity in the brain. Med Biol Eng Comput 50(5):425–437CrossRefPubMed
22.
Zurück zum Zitat Liu Y, Zhang YC (2014) A feasibility study of magnetic resonance electrical impedance tomography for prostate cancer detection. Physiol Meas 35(4):567–581CrossRefPubMedPubMedCentral Liu Y, Zhang YC (2014) A feasibility study of magnetic resonance electrical impedance tomography for prostate cancer detection. Physiol Meas 35(4):567–581CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Liu Y, Zhu SA, He B (2009) Induced current magnetic resonance electrical impedance tomography of brain tissues based on the J-substitution algorithm: a simulation study. Phys Med Biol 54(14):4561–4573CrossRefPubMedPubMedCentral Liu Y, Zhu SA, He B (2009) Induced current magnetic resonance electrical impedance tomography of brain tissues based on the J-substitution algorithm: a simulation study. Phys Med Biol 54(14):4561–4573CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Gursoy D, Scharfetter H (2010) Anisotropic conductivity tensor imaging using magnetic induction tomography. Physiol Meas 31:135–145CrossRef Gursoy D, Scharfetter H (2010) Anisotropic conductivity tensor imaging using magnetic induction tomography. Physiol Meas 31:135–145CrossRef
25.
Zurück zum Zitat Chauhan M, Indahlastari A, Kasinadhuni AK, Schär M, Mareci TH, Sadleir RJ (2017) Low-frequency conductivity tensor imaging of the human head in vivo using DT-MREIT: first study. IEEE Trans Med Imaging 37(4):966–976CrossRef Chauhan M, Indahlastari A, Kasinadhuni AK, Schär M, Mareci TH, Sadleir RJ (2017) Low-frequency conductivity tensor imaging of the human head in vivo using DT-MREIT: first study. IEEE Trans Med Imaging 37(4):966–976CrossRef
26.
Zurück zum Zitat Mori S (2007) Introduction to diffusion tensor imaging. In: Mori S (ed) Mathematics of diffusion measurement. Elsevier, Oxford, pp 19–32 Mori S (2007) Introduction to diffusion tensor imaging. In: Mori S (ed) Mathematics of diffusion measurement. Elsevier, Oxford, pp 19–32
27.
Zurück zum Zitat Kubicki M, Westin CF, Maier SE (2002) Diffusion tensor imaging and its application to neuropsychiatric disorders. Harvard Rev of Psychiat 10(6):324–336CrossRef Kubicki M, Westin CF, Maier SE (2002) Diffusion tensor imaging and its application to neuropsychiatric disorders. Harvard Rev of Psychiat 10(6):324–336CrossRef
28.
Zurück zum Zitat Shimony JS, McKinstry RC, Akbudak E (1999) Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology 212:770–784CrossRefPubMed Shimony JS, McKinstry RC, Akbudak E (1999) Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology 212:770–784CrossRefPubMed
30.
Zurück zum Zitat Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS (2006) Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. NeuroImage 30(3):813–826CrossRefPubMed Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS (2006) Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. NeuroImage 30(3):813–826CrossRefPubMed
31.
Zurück zum Zitat Tuch DS, Wedeen VJ, Dale AM, George JS, Belliveau JW (1999) Conductivity mapping of biological tissue using diffusion MRI. Ann N Y Acad Sci 888:314–316CrossRefPubMed Tuch DS, Wedeen VJ, Dale AM, George JS, Belliveau JW (1999) Conductivity mapping of biological tissue using diffusion MRI. Ann N Y Acad Sci 888:314–316CrossRefPubMed
32.
Zurück zum Zitat Sekino M, Yamaguchi K, Iriguchi N, Ueno S (2003) Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging. J Appl Phys 93(10):6730–6732CrossRef Sekino M, Yamaguchi K, Iriguchi N, Ueno S (2003) Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging. J Appl Phys 93(10):6730–6732CrossRef
33.
Zurück zum Zitat Wang K, Zhu S, Mueller BA, Mueller BA, Lim KO, Liu ZM, He B (2008) A new method to derive white matter conductivity from diffusion tensor MRI. IEEE Trans Biomed Eng 55(10):2481–2486CrossRefPubMedPubMedCentral Wang K, Zhu S, Mueller BA, Mueller BA, Lim KO, Liu ZM, He B (2008) A new method to derive white matter conductivity from diffusion tensor MRI. IEEE Trans Biomed Eng 55(10):2481–2486CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Wu ZX, Zhu SA, He B (2009) A new method of computing the conductivity tensor of brain tissue based on water diffusion tensor. Chin J Biomed Eng 28(4):521–525 Wu ZX, Zhu SA, He B (2009) A new method of computing the conductivity tensor of brain tissue based on water diffusion tensor. Chin J Biomed Eng 28(4):521–525
35.
Zurück zum Zitat O’Donnell LJ, Westin CF (2011) An introduction to diffusion tensor image analysis. Neurosurg Clin N Am 22(2):1–23CrossRef O’Donnell LJ, Westin CF (2011) An introduction to diffusion tensor image analysis. Neurosurg Clin N Am 22(2):1–23CrossRef
36.
Zurück zum Zitat Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546CrossRefPubMed Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546CrossRefPubMed
37.
Zurück zum Zitat Mori S, Barker PB (1999) Diffusion magnetic resonance imaging: its principle and applications. Anat Rec 257:102–109CrossRefPubMed Mori S, Barker PB (1999) Diffusion magnetic resonance imaging: its principle and applications. Anat Rec 257:102–109CrossRefPubMed
38.
Zurück zum Zitat Kapur T, Grimson WEL, III WMW, Kikinis R (1996) Segmentation of brain tissue from magnetic resonance images. Med Image Anal 1(2):109–127CrossRefPubMed Kapur T, Grimson WEL, III WMW, Kikinis R (1996) Segmentation of brain tissue from magnetic resonance images. Med Image Anal 1(2):109–127CrossRefPubMed
39.
Zurück zum Zitat Hoeltzell PB, Dykes RW (1979) Conductivity in the somatosensory cortex of the cat—evidence for cortical anisotropy. Brain Res 177(1):61–82CrossRefPubMed Hoeltzell PB, Dykes RW (1979) Conductivity in the somatosensory cortex of the cat—evidence for cortical anisotropy. Brain Res 177(1):61–82CrossRefPubMed
40.
Zurück zum Zitat Stanisz GJ (2003) Diffusion MR in biological systems: tissue compartments and exchange. Israel J Chem 43(1):33–44 Stanisz GJ (2003) Diffusion MR in biological systems: tissue compartments and exchange. Israel J Chem 43(1):33–44
41.
Zurück zum Zitat Geddes LA, Baker LE (1967) The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med Biol Eng Comput 5(3):271–293CrossRef Geddes LA, Baker LE (1967) The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med Biol Eng Comput 5(3):271–293CrossRef
42.
Zurück zum Zitat Tuch DS, Wedeen VJ, Dale AM, George JS, Belliveau JW (2001) Conductivity tensor mapping of the human brain using diffusion tensor MRI. PNAS 98(20):11697–11701CrossRefPubMed Tuch DS, Wedeen VJ, Dale AM, George JS, Belliveau JW (2001) Conductivity tensor mapping of the human brain using diffusion tensor MRI. PNAS 98(20):11697–11701CrossRefPubMed
43.
Zurück zum Zitat Sekino M, Inoue Y, Ueno S (2004) Magnetic resonance imaging of mean values and anisotropy of electrical conductivity in the human brain. Neurology and Clin Neurophysiol 55:1–5 Sekino M, Inoue Y, Ueno S (2004) Magnetic resonance imaging of mean values and anisotropy of electrical conductivity in the human brain. Neurology and Clin Neurophysiol 55:1–5
44.
Zurück zum Zitat Voronel A, Veliyulin E, Machavariani VS, Kisliuk A, Quitmann D (1998) Fractional Stokes-Einstein law for ionic transport in liquids. Phys Rev Lett 80(12):2630–2633CrossRef Voronel A, Veliyulin E, Machavariani VS, Kisliuk A, Quitmann D (1998) Fractional Stokes-Einstein law for ionic transport in liquids. Phys Rev Lett 80(12):2630–2633CrossRef
45.
Zurück zum Zitat Wen P, Li Y (2006) EEG human head modelling based on heterogeneous tissue conductivity. Australas Phys Eng S 29(3):235–240CrossRef Wen P, Li Y (2006) EEG human head modelling based on heterogeneous tissue conductivity. Australas Phys Eng S 29(3):235–240CrossRef
46.
Zurück zum Zitat Ma W, Demonte TP, Nachman AI, Elsaid NMH (2013) Experimental implementation of a new method of imaging anisotropic electric conductivities. In: 35th Annual international conference of the IEEE EMBS, July 3–7, Osaka Ma W, Demonte TP, Nachman AI, Elsaid NMH (2013) Experimental implementation of a new method of imaging anisotropic electric conductivities. In: 35th Annual international conference of the IEEE EMBS, July 3–7, Osaka
47.
Zurück zum Zitat Sen AK, Torquato S (1989) Effective conductivity of anisotropic two-phase composite media. Phys Rev B 39(7):4504–4515CrossRef Sen AK, Torquato S (1989) Effective conductivity of anisotropic two-phase composite media. Phys Rev B 39(7):4504–4515CrossRef
48.
Zurück zum Zitat Torquato S, Sen AK (1990) Conductivity tensor of anisotropic composite media from the microstructure. J Appl Phys 67(3):1145–1155CrossRef Torquato S, Sen AK (1990) Conductivity tensor of anisotropic composite media from the microstructure. J Appl Phys 67(3):1145–1155CrossRef
49.
Zurück zum Zitat Tuch DS, Reese TG, Wiegell MR, Wedeen VJ (2003) Diffusion MRI of complex neural architecture. Neuron 40:885–895CrossRefPubMed Tuch DS, Reese TG, Wiegell MR, Wedeen VJ (2003) Diffusion MRI of complex neural architecture. Neuron 40:885–895CrossRefPubMed
50.
Zurück zum Zitat Wu ZX, Gao MY, Zhu SA (2011) A survey on brain tissues anisotropic conductivity model based on diffusion tensor imaging. Acta Bioph Sin 27(6):491–499 Wu ZX, Gao MY, Zhu SA (2011) A survey on brain tissues anisotropic conductivity model based on diffusion tensor imaging. Acta Bioph Sin 27(6):491–499
Metadaten
Titel
A review of anisotropic conductivity models of brain white matter based on diffusion tensor imaging
verfasst von
Zhanxiong Wu
Yang Liu
Ming Hong
Xiaohui Yu
Publikationsdatum
01.06.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 8/2018
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-018-1845-9

Weitere Artikel der Ausgabe 8/2018

Medical & Biological Engineering & Computing 8/2018 Zur Ausgabe