Skip to main content
Erschienen in: Journal of Coatings Technology and Research 6/2021

20.09.2021 | Review Article

A review of plasma-based superhydrophobic textiles: theoretical definitions, fabrication, and recent developments

verfasst von: Esmaeil Eslami, Reza Jafari, Gelareh Momen

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this review, we present a comprehensive survey of techniques used to fabricate superhydrophobic—extreme nonwetting—textiles by plasma systems. First, we provide a brief introduction to superhydrophobic surfaces, plasma sources, and plasma surface processing. We then assess the plasma-based techniques capable of producing the required rough surface micronanotextures of superhydrophobic surfaces. The implications of tailoring the specific surface chemistry and texture will be discussed, and finally, we summarize future challenges and issues to be addressed for ensuring a better understanding and use of superhydrophobic fabrics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tayyab, M, Jemai, J, Lim, H, Sarkar, B, “A Sustainable Development Framework for A Cleaner Multi-Item Multi-Stage Textile Production System with a Process Improvement Initiative.” J. Clean. Prod., 246 119055 (2020)CrossRef Tayyab, M, Jemai, J, Lim, H, Sarkar, B, “A Sustainable Development Framework for A Cleaner Multi-Item Multi-Stage Textile Production System with a Process Improvement Initiative.” J. Clean. Prod., 246 119055 (2020)CrossRef
2.
Zurück zum Zitat Lakshmanan, SO, Raghavendran, G, "Low Water-Consumption Technologies for Textile Production." In: Sustainable Fibres and Textiles, pp. 243–265. Woodhead Publishing, New York (2017) Lakshmanan, SO, Raghavendran, G, "Low Water-Consumption Technologies for Textile Production." In: Sustainable Fibres and Textiles, pp. 243–265. Woodhead Publishing, New York (2017)  
3.
Zurück zum Zitat Ozturk, E, Cinperi, NC, Kitis, M, “Improving Energy Efficiency Using the Most Appropriate Techniques in An Integrated Woolen Textile Facility.” J. Clean. Prod., 254 120145 (2020)CrossRef Ozturk, E, Cinperi, NC, Kitis, M, “Improving Energy Efficiency Using the Most Appropriate Techniques in An Integrated Woolen Textile Facility.” J. Clean. Prod., 254 120145 (2020)CrossRef
4.
Zurück zum Zitat Zhou, L, Bai, Y, Zhou, H, Guo, S, “Environmentally Friendly Textile Production: Continuous Pretreatment of Knitted Cotton Fabric with Normal Temperature Plasma and Padding.” Cellulose, 26 (11) 6943–6958 (2019)CrossRef Zhou, L, Bai, Y, Zhou, H, Guo, S, “Environmentally Friendly Textile Production: Continuous Pretreatment of Knitted Cotton Fabric with Normal Temperature Plasma and Padding.” Cellulose, 26 (11) 6943–6958 (2019)CrossRef
5.
Zurück zum Zitat Mohsin, M, Sardar, S, “Development of Sustainable and Cost Efficient Textile Foam-Finishing and Its Comparison with Conventional Padding.” Cellulose, 27 1–17 (2020)CrossRef Mohsin, M, Sardar, S, “Development of Sustainable and Cost Efficient Textile Foam-Finishing and Its Comparison with Conventional Padding.” Cellulose, 27 1–17 (2020)CrossRef
6.
Zurück zum Zitat Hong, KH, “Effects of a Solvent System on the Functionalities of Wool and Cotton Fabrics Finished in Chestnut (Castanea crenata) Shell Extract.” Cellulose, 25 (4) 2745–2753 (2018)CrossRef Hong, KH, “Effects of a Solvent System on the Functionalities of Wool and Cotton Fabrics Finished in Chestnut (Castanea crenata) Shell Extract.” Cellulose, 25 (4) 2745–2753 (2018)CrossRef
7.
Zurück zum Zitat Liu, W, Zhu, L, Chen, X, Zhao, L, Sun, S, Wang, Y, “Study on Generation of Glow Discharge Plasma in air and Surface Modification of Wool Fabric.” Plasma Chem. Plasma Process., 39 (2) 487–501 (2019)CrossRef Liu, W, Zhu, L, Chen, X, Zhao, L, Sun, S, Wang, Y, “Study on Generation of Glow Discharge Plasma in air and Surface Modification of Wool Fabric.” Plasma Chem. Plasma Process., 39 (2) 487–501 (2019)CrossRef
8.
Zurück zum Zitat Yao, C, Yuan, A, Zhang, H, Li, B, Liu, J, Xi, F, Dong, X, “Facile Surface Modification of Textiles with Photocatalytic Carbon Nitride Nanosheets and the Excellent Performance for Self-Cleaning and Degradation of Gaseous Formaldehyde.” J. Colloid Interface Sci., 533 144–153 (2019)CrossRef Yao, C, Yuan, A, Zhang, H, Li, B, Liu, J, Xi, F, Dong, X, “Facile Surface Modification of Textiles with Photocatalytic Carbon Nitride Nanosheets and the Excellent Performance for Self-Cleaning and Degradation of Gaseous Formaldehyde.” J. Colloid Interface Sci., 533 144–153 (2019)CrossRef
9.
Zurück zum Zitat Jadoun, S, Verma, A and Arif, R, "Modification of Textiles via Nanomaterials and Their Applications." Front. Textile Mater. Polym. Nanomater. Enzymes Adv. Modif. Tech. Chapter 6 pp. 135–152 (2020) Jadoun, S, Verma, A and Arif, R, "Modification of Textiles via Nanomaterials and Their Applications." Front. Textile Mater. Polym. Nanomater. Enzymes Adv. Modif. Tech. Chapter 6 pp. 135–152 (2020)
10.
Zurück zum Zitat Li, W, Zhao, Y, Wang, X, “Effect of Surface Modification on the Dynamic Heat and Mass Transfer of Wool Fabrics.” J. Therm. Biol., 85 102416 (2019)CrossRef Li, W, Zhao, Y, Wang, X, “Effect of Surface Modification on the Dynamic Heat and Mass Transfer of Wool Fabrics.” J. Therm. Biol., 85 102416 (2019)CrossRef
11.
Zurück zum Zitat Nadi, A, Boukhriss, A, Bentis, A, Jabrane, E, Gmouh, S, “Evolution in the Surface Modification of Textiles: A Review.” Text. Progress, 50 (2) 67–108 (2018)CrossRef Nadi, A, Boukhriss, A, Bentis, A, Jabrane, E, Gmouh, S, “Evolution in the Surface Modification of Textiles: A Review.” Text. Progress, 50 (2) 67–108 (2018)CrossRef
12.
Zurück zum Zitat Şimşek, B, Karaman, M, “Initiated Chemical Vapor Deposition of Poly (Hexafluorobutyl Acrylate) Thin Films for Superhydrophobic Surface Modification of Nanostructured Textile Surfaces.” J. Coat. Technol. Res., 17 (2) 381–391 (2020)CrossRef Şimşek, B, Karaman, M, “Initiated Chemical Vapor Deposition of Poly (Hexafluorobutyl Acrylate) Thin Films for Superhydrophobic Surface Modification of Nanostructured Textile Surfaces.” J. Coat. Technol. Res., 17 (2) 381–391 (2020)CrossRef
13.
Zurück zum Zitat Zanini, S, Citterio, A, Leonardi, G, Riccardi, C, “Characterization of Atmospheric Pressure Plasma Treated Wool/Cashmere Textiles: Treatment in Nitrogen.” Appl. Surf. Sci., 427 90–96 (2018)CrossRef Zanini, S, Citterio, A, Leonardi, G, Riccardi, C, “Characterization of Atmospheric Pressure Plasma Treated Wool/Cashmere Textiles: Treatment in Nitrogen.” Appl. Surf. Sci., 427 90–96 (2018)CrossRef
14.
Zurück zum Zitat Haji, A, Naebe, M, “Cleaner Dyeing of Textiles Using Plasma Treatment and Natural Dyes: A Review.” J. Clean. Prod., 265 121866 (2020)CrossRef Haji, A, Naebe, M, “Cleaner Dyeing of Textiles Using Plasma Treatment and Natural Dyes: A Review.” J. Clean. Prod., 265 121866 (2020)CrossRef
15.
Zurück zum Zitat Zhang, C, Zhao, M, Wang, L, Qu, L, Men, Y, “Surface Modification of Polyester Fabrics by Atmospheric-Pressure Air/He Plasma for Color Strength and Adhesion Enhancement.” Appl. Surf. Sci., 400 304–311 (2017)CrossRef Zhang, C, Zhao, M, Wang, L, Qu, L, Men, Y, “Surface Modification of Polyester Fabrics by Atmospheric-Pressure Air/He Plasma for Color Strength and Adhesion Enhancement.” Appl. Surf. Sci., 400 304–311 (2017)CrossRef
16.
Zurück zum Zitat Al Kashouty, M, Elsayad, H, Salem, T, Elhadad, S, Twaffiek, S, "An Overview: Textile Surface Modification by Using Sol-Gel Technology." Egypt. J. Chem., 63 3301–3311 (2020) Al Kashouty, M, Elsayad, H, Salem, T, Elhadad, S, Twaffiek, S, "An Overview: Textile Surface Modification by Using Sol-Gel Technology." Egypt. J. Chem., 63 3301–3311 (2020)
17.
Zurück zum Zitat van der Velden, NM, Patel, MK, Vogtländer, JG, “LCA Benchmarking Study on Textiles Made of Cotton, Polyester, Nylon, Acryl, or Elastane.” Int. J. Life Cycle Assess., 19 (2) 331–356 (2014)CrossRef van der Velden, NM, Patel, MK, Vogtländer, JG, “LCA Benchmarking Study on Textiles Made of Cotton, Polyester, Nylon, Acryl, or Elastane.” Int. J. Life Cycle Assess., 19 (2) 331–356 (2014)CrossRef
18.
Zurück zum Zitat Choe, EK, Lee, M, Park, KS, Chung, C, "Characterization of Cotton Fabric Scouring by Fourier Transform-Infrared Attenuated Total Reflectance Spectroscopy, Gas Chromatography-Mass Spectrometry and Water Absorption Measurements." Text. Res. J., 0040517518790976 (2018) Choe, EK, Lee, M, Park, KS, Chung, C, "Characterization of Cotton Fabric Scouring by Fourier Transform-Infrared Attenuated Total Reflectance Spectroscopy, Gas Chromatography-Mass Spectrometry and Water Absorption Measurements." Text. Res. J., 0040517518790976 (2018)
19.
Zurück zum Zitat Liu, K, Zhang, X, Yan, K, “Bleaching of Cotton Fabric with Tetraacetylhydrazine as Bleach Activator for H2O2.” Carbohydr. Polym., 188 221–227 (2018)CrossRef Liu, K, Zhang, X, Yan, K, “Bleaching of Cotton Fabric with Tetraacetylhydrazine as Bleach Activator for H2O2.” Carbohydr. Polym., 188 221–227 (2018)CrossRef
20.
Zurück zum Zitat Fu, S, Farrell, M, Hauser, P, Ankeny, M, “Influence of Liquor Ratio and Amount of Dyestuff in Producing Ultradeep Black Dyeing Using Mercerised and Cationised Cotton.” Colorat. Technol., 132 (3) 232–237 (2016)CrossRef Fu, S, Farrell, M, Hauser, P, Ankeny, M, “Influence of Liquor Ratio and Amount of Dyestuff in Producing Ultradeep Black Dyeing Using Mercerised and Cationised Cotton.” Colorat. Technol., 132 (3) 232–237 (2016)CrossRef
21.
Zurück zum Zitat Eum, KY, Phiri, I, Kim, JW, San Choi, W, Ko, JM, Jung, H, “Superhydrophobic and Superoleophilic Nickel Foam for Oil/Water Separation.” Korean J. Chem. Eng., 36 (8) 1313–1320 (2019)CrossRef Eum, KY, Phiri, I, Kim, JW, San Choi, W, Ko, JM, Jung, H, “Superhydrophobic and Superoleophilic Nickel Foam for Oil/Water Separation.” Korean J. Chem. Eng., 36 (8) 1313–1320 (2019)CrossRef
22.
Zurück zum Zitat Radetic, M, Jovancic, P, Puac, N, Petrovic, ZL, "Environmental Impact of Plasma Application to Textiles." Proc. J. Phys. Conf. Ser, 71 012017 (2007) Radetic, M, Jovancic, P, Puac, N, Petrovic, ZL, "Environmental Impact of Plasma Application to Textiles." Proc. J. Phys. Conf. Ser, 71 012017 (2007)
23.
Zurück zum Zitat Blackburn, R, Sustainable Textiles: Life Cycle and Environmental Impact. Elsevier, New York (2009)CrossRef Blackburn, R, Sustainable Textiles: Life Cycle and Environmental Impact. Elsevier, New York (2009)CrossRef
24.
Zurück zum Zitat Tunakova, V, Hrubosova, Z, Tunak, M, Kasparova, M, Mullerova, J, “Laser Surface Modification of Electrically Conductive Fabrics: Material Performance Improvement and Design Effects.” Opt. Laser Technol., 98 178–189 (2018)CrossRef Tunakova, V, Hrubosova, Z, Tunak, M, Kasparova, M, Mullerova, J, “Laser Surface Modification of Electrically Conductive Fabrics: Material Performance Improvement and Design Effects.” Opt. Laser Technol., 98 178–189 (2018)CrossRef
25.
Zurück zum Zitat Hung, O-n, Chan, C-k, Kan, C-w, Yuen, C-wM, “Microscopic Study of the Surface Morphology of CO2 Laser-Treated Cotton and Cotton/Polyester Blended Fabric.” Text. Res. J., 87 (9) 1107–1120 (2017)CrossRef Hung, O-n, Chan, C-k, Kan, C-w, Yuen, C-wM, “Microscopic Study of the Surface Morphology of CO2 Laser-Treated Cotton and Cotton/Polyester Blended Fabric.” Text. Res. J., 87 (9) 1107–1120 (2017)CrossRef
26.
Zurück zum Zitat Meena, K, Meena, K, “Photochemical Bleaching of Textile Waste Water of Bhilwara (Rajasthan) by Photo Fenton Reagent.” J. Mod. Chem. Chem. Technol., 8 (3) 33–36 (2017) Meena, K, Meena, K, “Photochemical Bleaching of Textile Waste Water of Bhilwara (Rajasthan) by Photo Fenton Reagent.” J. Mod. Chem. Chem. Technol., 8 (3) 33–36 (2017)
27.
Zurück zum Zitat Wojciechowski, K, Jedrzejczak, M, “Photochemical Degradation of Disazo Dyes, R-Salt Derivatives, on Dyed Cotton.” J. Nat. Fib., 14 (3) 346–356 (2017)CrossRef Wojciechowski, K, Jedrzejczak, M, “Photochemical Degradation of Disazo Dyes, R-Salt Derivatives, on Dyed Cotton.” J. Nat. Fib., 14 (3) 346–356 (2017)CrossRef
28.
Zurück zum Zitat Şakalak, H, Yılmaz, K, Gürsoy, M, Karaman, M, “Roll-to Roll Initiated Chemical Vapor Deposition of Super Hydrophobic Thin Films on Large-Scale Flexible Substrates.” Chem. Eng. Sci., 215 115466 (2020)CrossRef Şakalak, H, Yılmaz, K, Gürsoy, M, Karaman, M, “Roll-to Roll Initiated Chemical Vapor Deposition of Super Hydrophobic Thin Films on Large-Scale Flexible Substrates.” Chem. Eng. Sci., 215 115466 (2020)CrossRef
29.
Zurück zum Zitat Frost, G, Ladani, L, “Development of High-Temperature-Resistant Seed Layer for Electrodeposition of Copper for Microelectronic Applications.” J. Electron. Mater., 49 (2) 1387–1395 (2020)CrossRef Frost, G, Ladani, L, “Development of High-Temperature-Resistant Seed Layer for Electrodeposition of Copper for Microelectronic Applications.” J. Electron. Mater., 49 (2) 1387–1395 (2020)CrossRef
30.
Zurück zum Zitat Bekeschus, S, Favia, P, Robert, E, von Woedtke, T, “White Paper on Plasma for Medicine and Hygiene: Future in Plasma Health Sciences.” Plasma Process. Polym., 16 (1) 1800033 (2019)CrossRef Bekeschus, S, Favia, P, Robert, E, von Woedtke, T, “White Paper on Plasma for Medicine and Hygiene: Future in Plasma Health Sciences.” Plasma Process. Polym., 16 (1) 1800033 (2019)CrossRef
31.
Zurück zum Zitat Cerny, P, Bartos, P, Olsan, P, Spatenka, P, “Hydrophobization of Cotton Fabric by Gliding Arc Plasma Discharge.” Curr. Appl. Phys., 19 (2) 128–136 (2019)CrossRef Cerny, P, Bartos, P, Olsan, P, Spatenka, P, “Hydrophobization of Cotton Fabric by Gliding Arc Plasma Discharge.” Curr. Appl. Phys., 19 (2) 128–136 (2019)CrossRef
32.
Zurück zum Zitat Irfan, M, Polonskyi, O, Hinz, A, Mollea, C, Bosco, F, Strunskus, T, Balagna, C, Perero, S, Faupel, F, Ferraris, M, “Antibacterial, Highly Hydrophobic and Semi Transparent Ag/Plasma Polymer Nanocomposite Coating on Cotton Fabric Obtained by Plasma Based Co-Deposition.” Cellulose, 26 (16) 8877–8894 (2019)CrossRef Irfan, M, Polonskyi, O, Hinz, A, Mollea, C, Bosco, F, Strunskus, T, Balagna, C, Perero, S, Faupel, F, Ferraris, M, “Antibacterial, Highly Hydrophobic and Semi Transparent Ag/Plasma Polymer Nanocomposite Coating on Cotton Fabric Obtained by Plasma Based Co-Deposition.” Cellulose, 26 (16) 8877–8894 (2019)CrossRef
33.
Zurück zum Zitat Palaskar, SS, Kale, RD, Deshmukh, RR, “Application of Atmospheric Pressure Plasma for Adhesion Improvement in Polyurethane Coating on Polypropylene Fabrics.” J. Coat. Technol. Res., 17 (2) 485–501 (2020)CrossRef Palaskar, SS, Kale, RD, Deshmukh, RR, “Application of Atmospheric Pressure Plasma for Adhesion Improvement in Polyurethane Coating on Polypropylene Fabrics.” J. Coat. Technol. Res., 17 (2) 485–501 (2020)CrossRef
34.
Zurück zum Zitat Abd Jelil, R, “A Review of Low-Temperature Plasma Treatment of Textile Materials.” J. Mater. Sci., 50 (18) 5913–5943 (2015)CrossRef Abd Jelil, R, “A Review of Low-Temperature Plasma Treatment of Textile Materials.” J. Mater. Sci., 50 (18) 5913–5943 (2015)CrossRef
35.
Zurück zum Zitat Zille, A, Oliveira, FR, Souto, AP, “Plasma Treatment in Textile Industry.” Plasma Process. Polym., 12 (2) 98–131 (2015)CrossRef Zille, A, Oliveira, FR, Souto, AP, “Plasma Treatment in Textile Industry.” Plasma Process. Polym., 12 (2) 98–131 (2015)CrossRef
36.
Zurück zum Zitat Shahidi, S, Ghoranneviss, M, Moazzenchi, B, “New Advances in Plasma Technology for Textile.” J. Fusion Energy, 33 (2) 97–102 (2014)CrossRef Shahidi, S, Ghoranneviss, M, Moazzenchi, B, “New Advances in Plasma Technology for Textile.” J. Fusion Energy, 33 (2) 97–102 (2014)CrossRef
37.
Zurück zum Zitat Morent, R, De Geyter, N, Verschuren, J, De Clerck, K, Kiekens, P, Leys, C, “Non-Thermal Plasma Treatment of Textiles.” Surf. Coat. Technol., 202 (14) 3427–3449 (2008)CrossRef Morent, R, De Geyter, N, Verschuren, J, De Clerck, K, Kiekens, P, Leys, C, “Non-Thermal Plasma Treatment of Textiles.” Surf. Coat. Technol., 202 (14) 3427–3449 (2008)CrossRef
38.
Zurück zum Zitat Kale, KH, Desai, A, "Atmospheric Pressure Plasma Treatment of Textiles Using Non-Polymerising Gases" (2011) Kale, KH, Desai, A, "Atmospheric Pressure Plasma Treatment of Textiles Using Non-Polymerising Gases" (2011)
39.
Zurück zum Zitat McCoustra, MR, Mather, RR, “Plasma Modification of Textiles: Understanding the Mechanisms Involved.” Text. Prog., 50 (4) 185–229 (2018)CrossRef McCoustra, MR, Mather, RR, “Plasma Modification of Textiles: Understanding the Mechanisms Involved.” Text. Prog., 50 (4) 185–229 (2018)CrossRef
40.
Zurück zum Zitat Zille, A, “Plasma Technology in Fashion and Textiles.” In: Sustainable Technologies for Fashion and Textiles, pp. 117–142 Woodhead Publishing, New York (2020) Zille, A, “Plasma Technology in Fashion and Textiles.” In: Sustainable Technologies for Fashion and Textiles, pp. 117–142 Woodhead Publishing, New York (2020)
41.
Zurück zum Zitat Nema, S, Jhala, PB, Plasma Technologies for Textile and Apparel. CRC Press, London (2015)CrossRef Nema, S, Jhala, PB, Plasma Technologies for Textile and Apparel. CRC Press, London (2015)CrossRef
42.
Zurück zum Zitat Dimitrakellis, P, Gogolides, E, “Hydrophobic and Superhydrophobic Surfaces Fabricated Using Atmospheric Pressure Cold Plasma Technology: A Review.” Adv. Colloid Interface Sci., 254 1–21 (2018)CrossRef Dimitrakellis, P, Gogolides, E, “Hydrophobic and Superhydrophobic Surfaces Fabricated Using Atmospheric Pressure Cold Plasma Technology: A Review.” Adv. Colloid Interface Sci., 254 1–21 (2018)CrossRef
43.
Zurück zum Zitat Hossain, MA, Chen, W, Zheng, J, Zhang, Y, Wang, C, Jin, S, Wu, H, “The Effect of O2 Plasma Treatment and PA 6 Coating on Digital Ink-Jet Printing of PET non-Woven Fabric.” J. Text. Inst., 111 1–7 (2019) Hossain, MA, Chen, W, Zheng, J, Zhang, Y, Wang, C, Jin, S, Wu, H, “The Effect of O2 Plasma Treatment and PA 6 Coating on Digital Ink-Jet Printing of PET non-Woven Fabric.” J. Text. Inst., 111 1–7 (2019)
44.
Zurück zum Zitat Gandhiraman, RP, Singh, E, Diaz-Cartagena, DC, Nordlund, D, Koehne, J, Meyyappan, M, “Plasma Jet Printing for Flexible Substrates.” Appl. Phys. Lett., 108 (12) 123103 (2016)CrossRef Gandhiraman, RP, Singh, E, Diaz-Cartagena, DC, Nordlund, D, Koehne, J, Meyyappan, M, “Plasma Jet Printing for Flexible Substrates.” Appl. Phys. Lett., 108 (12) 123103 (2016)CrossRef
45.
Zurück zum Zitat Azeem, M, Javed, A, Morikawa, H, Noman, MT, Khan, MQ, Shahid, M, Wiener, J, "Hydrophilization of Polyester Textiles by Nonthermal Plasma." Autex Res. J. 1 (ahead-of-print) (2019) Azeem, M, Javed, A, Morikawa, H, Noman, MT, Khan, MQ, Shahid, M, Wiener, J, "Hydrophilization of Polyester Textiles by Nonthermal Plasma." Autex Res. J. 1 (ahead-of-print) (2019)
46.
Zurück zum Zitat Ghimire, B, Subedi, DP, Khanal, R, “Improvement of Wettability and Absorbancy of Textile Using Atmospheric Pressure Dielectric Barrier Discharge.” AIP Adv., 7 (8) 085213 (2017)CrossRef Ghimire, B, Subedi, DP, Khanal, R, “Improvement of Wettability and Absorbancy of Textile Using Atmospheric Pressure Dielectric Barrier Discharge.” AIP Adv., 7 (8) 085213 (2017)CrossRef
47.
Zurück zum Zitat Wang, WY, Choi, HT, Kan, CW, Jaroensappayanant, P, Rug-Ngam, P, Surakul, K, Mongkholrattanasit, R, "Effect of Plasma Pre-Treatment on the Dyeability of Silk Fabric with Metal-Complex Dye." Proc. Key Eng. Mater., 818 21–25 (2019) Wang, WY, Choi, HT, Kan, CW, Jaroensappayanant, P, Rug-Ngam, P, Surakul, K, Mongkholrattanasit, R, "Effect of Plasma Pre-Treatment on the Dyeability of Silk Fabric with Metal-Complex Dye." Proc. Key Eng. Mater., 818 21–25 (2019)
48.
Zurück zum Zitat Haji, A, “Plasma Activation and Chitosan Attachment on Cotton and Wool for Improvement of Dyeability and Fastness Properties.” Pigment Resin Technol., 49 483–489 (2020) CrossRef Haji, A, “Plasma Activation and Chitosan Attachment on Cotton and Wool for Improvement of Dyeability and Fastness Properties.” Pigment Resin Technol., 49 483–489 (2020) CrossRef
49.
Zurück zum Zitat Sun, S, Li, Y, Fu, C, Wu, J, Qiu, Y, Hui, J, Du, X, “Influence of He/O2 Atmospheric Pressure Plasma Pretreatment on Sizing Adhesion Strength and Breaking Elongation of Sized Cotton Rovings.” Text. Res. J., 87 (6) 682–693 (2017)CrossRef Sun, S, Li, Y, Fu, C, Wu, J, Qiu, Y, Hui, J, Du, X, “Influence of He/O2 Atmospheric Pressure Plasma Pretreatment on Sizing Adhesion Strength and Breaking Elongation of Sized Cotton Rovings.” Text. Res. J., 87 (6) 682–693 (2017)CrossRef
50.
Zurück zum Zitat Ghasemi, S, Tajvidi, M, Gardner, DJ, Bousfield, DW, Shaler, SM, “Effect of Wettability and Surface Free Energy of Collection Substrates on the Structure and Morphology of Dry-Spun Cellulose Nanofibril Filaments.” Cellulose, 25 (11) 6305–6317 (2018)CrossRef Ghasemi, S, Tajvidi, M, Gardner, DJ, Bousfield, DW, Shaler, SM, “Effect of Wettability and Surface Free Energy of Collection Substrates on the Structure and Morphology of Dry-Spun Cellulose Nanofibril Filaments.” Cellulose, 25 (11) 6305–6317 (2018)CrossRef
51.
Zurück zum Zitat Saleem, M, Kousar, N, Shoukat, B, Shoaib-ur-Rehman, M, Batool, F, Naz, M, Ghaffar, A, "Plasma-Fabric Interaction for Surface Activation and Functionalization: A Review." Proc. IOP Conf. Ser. Mater. Sci. Eng., 863 012036 (2020) Saleem, M, Kousar, N, Shoukat, B, Shoaib-ur-Rehman, M, Batool, F, Naz, M, Ghaffar, A, "Plasma-Fabric Interaction for Surface Activation and Functionalization: A Review." Proc. IOP Conf. Ser. Mater. Sci. Eng., 863 012036 (2020)
52.
Zurück zum Zitat Kundu, D, Banerjee, D, Ghosh, S, Das, N, Thakur, S, Das, B, Chattopadhyay, K, “Plasma Enhanced Chemical Vapour Deposited Amorphous Carbon Coating for Hydrophobicity Enhancement in Commercial Cotton Fabrics.” Physica E Low Dimen. Syst. Nanostruct., 114 113594 (2019)CrossRef Kundu, D, Banerjee, D, Ghosh, S, Das, N, Thakur, S, Das, B, Chattopadhyay, K, “Plasma Enhanced Chemical Vapour Deposited Amorphous Carbon Coating for Hydrophobicity Enhancement in Commercial Cotton Fabrics.” Physica E Low Dimen. Syst. Nanostruct., 114 113594 (2019)CrossRef
53.
Zurück zum Zitat Dimic-Misic, K, Kostić, M, Obradović, B, Kramar, A, Jovanović, S, Stepanenko, D, Mitrović-Dankulov, M, Lazović, S, Johansson, L-S, Maloney, T, “Nitrogen Plasma Surface Treatment for Improving Polar Ink Adhesion on Micro/Nanofibrillated Cellulose Films.” Cellulose, 26 (6) 3845–3857 (2019)CrossRef Dimic-Misic, K, Kostić, M, Obradović, B, Kramar, A, Jovanović, S, Stepanenko, D, Mitrović-Dankulov, M, Lazović, S, Johansson, L-S, Maloney, T, “Nitrogen Plasma Surface Treatment for Improving Polar Ink Adhesion on Micro/Nanofibrillated Cellulose Films.” Cellulose, 26 (6) 3845–3857 (2019)CrossRef
54.
Zurück zum Zitat Xu, L, Guo, Y, Liu, L, Bai, G, Shi, J, Zhang, L, Chang, X, Zhang, R, Zhang, J, Yu, J, “Fabrication of Fluorine-Free, Comfortable and Wearable Superhydrophobic Fabrics via Capacitance Coupled Plasma with Methyl Side-Chain Lauryl Methacrylate Coatings.” Prog. Org. Coat., 146 105727 (2020)CrossRef Xu, L, Guo, Y, Liu, L, Bai, G, Shi, J, Zhang, L, Chang, X, Zhang, R, Zhang, J, Yu, J, “Fabrication of Fluorine-Free, Comfortable and Wearable Superhydrophobic Fabrics via Capacitance Coupled Plasma with Methyl Side-Chain Lauryl Methacrylate Coatings.” Prog. Org. Coat., 146 105727 (2020)CrossRef
55.
Zurück zum Zitat Talebian, A, Habibi, S, Neshat, P, “Green Dyeing of Weld on Corona Discharge Treated Wool Fabric.” J. Text. Inst., 112 1–8 (2020) Talebian, A, Habibi, S, Neshat, P, “Green Dyeing of Weld on Corona Discharge Treated Wool Fabric.” J. Text. Inst., 112 1–8 (2020)
56.
Zurück zum Zitat Ibrahim, NA, Eid, BM, "Plasma Treatment Technology for Surface Modification and Functionalization of Cellulosic Fabrics." In: Advances in Functional Finishing of Textiles, pp. 275–287. Springer (2020) Ibrahim, NA, Eid, BM, "Plasma Treatment Technology for Surface Modification and Functionalization of Cellulosic Fabrics." In: Advances in Functional Finishing of Textiles, pp. 275–287. Springer (2020)
57.
Zurück zum Zitat Pandit, P, Samanta, KK, Teli, M, "Optimization of Atmospheric Plasma Treatment Parameters for Hydrophobic Finishing of Silk Using Box Behnken Design." J. Nat. Fibers, 18 1–12 (2020) Pandit, P, Samanta, KK, Teli, M, "Optimization of Atmospheric Plasma Treatment Parameters for Hydrophobic Finishing of Silk Using Box Behnken Design." J. Nat. Fibers, 18 1–12 (2020)
58.
Zurück zum Zitat Sohbatzadeh, F, Shafei, F, Shakerinasab, E, Salehan, MK, Ghasemi, M, “Roll-to-Roll Treatment of Silk Thread by a Compact, Single-Step Cold Atmospheric Plasma: Hydrophobicity and Mechanical Properties.” Appl. Phys. A, 126 (7) 1–13 (2020)CrossRef Sohbatzadeh, F, Shafei, F, Shakerinasab, E, Salehan, MK, Ghasemi, M, “Roll-to-Roll Treatment of Silk Thread by a Compact, Single-Step Cold Atmospheric Plasma: Hydrophobicity and Mechanical Properties.” Appl. Phys. A, 126 (7) 1–13 (2020)CrossRef
59.
Zurück zum Zitat Orazbayev, S, Gabdullin, M, Ramazanov, T, Askar, Z, Rakhymzhan, Z, “Obtaining Hydrophobic Surfaces in Atmospheric Pressure Plasma.” Mater. Today Proc., 20 335–341 (2020)CrossRef Orazbayev, S, Gabdullin, M, Ramazanov, T, Askar, Z, Rakhymzhan, Z, “Obtaining Hydrophobic Surfaces in Atmospheric Pressure Plasma.” Mater. Today Proc., 20 335–341 (2020)CrossRef
60.
Zurück zum Zitat Anupriyanka, T, Shanmugavelayutham, G, Sarma, B, Mariammal, M, "A Single Step Approach of Fabricating Superhydrophobic PET Fabric by Using Low Pressure Plasma for Oil-Water Separation." Colloids Surf. A Physicochem. Eng. Aspects, 600 124949 (2020) Anupriyanka, T, Shanmugavelayutham, G, Sarma, B, Mariammal, M, "A Single Step Approach of Fabricating Superhydrophobic PET Fabric by Using Low Pressure Plasma for Oil-Water Separation." Colloids Surf. A Physicochem. Eng. Aspects, 600 124949 (2020)
61.
Zurück zum Zitat Jafari, R, Asadollahi, S, Farzaneh, M, “Applications of Plasma Technology in Development of Superhydrophobic Surfaces.” Plasma Chem. Plasma Process., 33 (1) 177–200 (2013)CrossRef Jafari, R, Asadollahi, S, Farzaneh, M, “Applications of Plasma Technology in Development of Superhydrophobic Surfaces.” Plasma Chem. Plasma Process., 33 (1) 177–200 (2013)CrossRef
62.
Zurück zum Zitat Yang, J, Pu, Y, He, H, Cao, R, Miao, D, Ning, X, “Superhydrophobic Cotton Nonwoven Fabrics Through Atmospheric Plasma Treatment for Applications in Self-Cleaning and Oil–Water Separation.” Cellulose, 26 (12) 7507–7522 (2019)CrossRef Yang, J, Pu, Y, He, H, Cao, R, Miao, D, Ning, X, “Superhydrophobic Cotton Nonwoven Fabrics Through Atmospheric Plasma Treatment for Applications in Self-Cleaning and Oil–Water Separation.” Cellulose, 26 (12) 7507–7522 (2019)CrossRef
63.
Zurück zum Zitat Xu, L, Lai, Y, Liu, L, Yang, L, Guo, Y, Chang, X, Shi, J, Zhang, R, Yu, J, “The Effect of Plasma Electron Temperature on the Surface Properties of Super-Hydrophobic Cotton Fabrics.” Coatings, 10 (2) 160 (2020)CrossRef Xu, L, Lai, Y, Liu, L, Yang, L, Guo, Y, Chang, X, Shi, J, Zhang, R, Yu, J, “The Effect of Plasma Electron Temperature on the Surface Properties of Super-Hydrophobic Cotton Fabrics.” Coatings, 10 (2) 160 (2020)CrossRef
64.
Zurück zum Zitat Siddig, EA, Yu, X, Tao, H, Ming, G, Baojing, Y, Tianshu, W, Zhang, J, “Plasma-Induced Graft Polymerization on the Surface of Aramid Fabrics with Improved Omniphobicity and Washing Durability.” Plasma Sci. Technol., 22 (5) 055503 (2020)CrossRef Siddig, EA, Yu, X, Tao, H, Ming, G, Baojing, Y, Tianshu, W, Zhang, J, “Plasma-Induced Graft Polymerization on the Surface of Aramid Fabrics with Improved Omniphobicity and Washing Durability.” Plasma Sci. Technol., 22 (5) 055503 (2020)CrossRef
65.
Zurück zum Zitat Liu, S, Su, Y, Wu, M, Zhao, C, Yuan, D, Feng, Z, Liu, D, “The Effect of Dielectric Barrier Discharge Plasma Treatment on the Air Drag Force of Polyacrylonitrile, Polyethylene, Polypropylene and Polyethylene Terephthalate Yarns.” Text. Res. J., 89 (10) 1938–1951 (2019)CrossRef Liu, S, Su, Y, Wu, M, Zhao, C, Yuan, D, Feng, Z, Liu, D, “The Effect of Dielectric Barrier Discharge Plasma Treatment on the Air Drag Force of Polyacrylonitrile, Polyethylene, Polypropylene and Polyethylene Terephthalate Yarns.” Text. Res. J., 89 (10) 1938–1951 (2019)CrossRef
66.
Zurück zum Zitat Jafari, R, Momen, G, Eslami, E, “"Fabrication of Icephobic Aluminium Surfaces by Atmospheric Plasma Jet Polymerisation.” Surf. Eng., 35 1–6 (2018) Jafari, R, Momen, G, Eslami, E, “"Fabrication of Icephobic Aluminium Surfaces by Atmospheric Plasma Jet Polymerisation.” Surf. Eng., 35 1–6 (2018)
67.
Zurück zum Zitat Mobarakeh, LF, Jafari, R, Farzaneh, M, “Robust Icephobic, and Anticorrosive Plasma Polymer Coating.” Cold Regions Sci. Technol., 151 89–93 (2018)CrossRef Mobarakeh, LF, Jafari, R, Farzaneh, M, “Robust Icephobic, and Anticorrosive Plasma Polymer Coating.” Cold Regions Sci. Technol., 151 89–93 (2018)CrossRef
68.
Zurück zum Zitat Vazirinasab, E, Maghsoudi, K, Jafari, R, Momen, G, “A comparative Study of the Icephobic and Self-Cleaning Properties of Teflon Materials Having Different Surface Morphologies.” J. Mater. Process. Technol., 276 116415 (2020)CrossRef Vazirinasab, E, Maghsoudi, K, Jafari, R, Momen, G, “A comparative Study of the Icephobic and Self-Cleaning Properties of Teflon Materials Having Different Surface Morphologies.” J. Mater. Process. Technol., 276 116415 (2020)CrossRef
69.
Zurück zum Zitat Vazirinasab, E, Jafari, R, Momen, G, “Application of Superhydrophobic Coatings as a Corrosion Barrier: A Review.” Surf. Coat. Technol., 341 40–56 (2018)CrossRef Vazirinasab, E, Jafari, R, Momen, G, “Application of Superhydrophobic Coatings as a Corrosion Barrier: A Review.” Surf. Coat. Technol., 341 40–56 (2018)CrossRef
70.
Zurück zum Zitat Jeevahan, J, Chandrasekaran, M, Joseph, GB, Durairaj, R, Mageshwaran, G, “Superhydrophobic Surfaces: A Review on Fundamentals, Applications, and Challenges.” J. Coat. Technol. Res., 15 (2) 231–250 (2018)CrossRef Jeevahan, J, Chandrasekaran, M, Joseph, GB, Durairaj, R, Mageshwaran, G, “Superhydrophobic Surfaces: A Review on Fundamentals, Applications, and Challenges.” J. Coat. Technol. Res., 15 (2) 231–250 (2018)CrossRef
71.
Zurück zum Zitat Dalawai, SP, Aly, MAS, Latthe, SS, Xing, R, Sutar, RS, Nagappan, S, Ha, C-S, Sadasivuni, KK, Liu, S, “Recent Advances in Durability of Superhydrophobic Self-Cleaning Technology: A Critical Review.” Prog. Org. Coat., 138 105381 (2020)CrossRef Dalawai, SP, Aly, MAS, Latthe, SS, Xing, R, Sutar, RS, Nagappan, S, Ha, C-S, Sadasivuni, KK, Liu, S, “Recent Advances in Durability of Superhydrophobic Self-Cleaning Technology: A Critical Review.” Prog. Org. Coat., 138 105381 (2020)CrossRef
72.
Zurück zum Zitat Nguyen-Tri, P, Tran, HN, Plamondon, CO, Tuduri, L, Vo, D-VN, Nanda, S, Mishra, A, Chao, H-P, Bajpai, A, “Recent Progress in the Preparation, Properties and Applications of Superhydrophobic Nano-Based Coatings and Surfaces: A Review.” Prog. Org. Coat., 132 235–256 (2019)CrossRef Nguyen-Tri, P, Tran, HN, Plamondon, CO, Tuduri, L, Vo, D-VN, Nanda, S, Mishra, A, Chao, H-P, Bajpai, A, “Recent Progress in the Preparation, Properties and Applications of Superhydrophobic Nano-Based Coatings and Surfaces: A Review.” Prog. Org. Coat., 132 235–256 (2019)CrossRef
73.
Zurück zum Zitat Ellinas, K, Tserepi, A, Gogolides, E, “Durable Superhydrophobic and Superamphiphobic Polymeric Surfaces and Their Applications: A Review.” Adv. Colloid Interface Sci., 250 132–157 (2017)CrossRef Ellinas, K, Tserepi, A, Gogolides, E, “Durable Superhydrophobic and Superamphiphobic Polymeric Surfaces and Their Applications: A Review.” Adv. Colloid Interface Sci., 250 132–157 (2017)CrossRef
74.
Zurück zum Zitat Avrămescu, R-E, Ghica, MV, Dinu-Pîrvu, C, Prisada, R, Popa, L, “Superhydrophobic Natural and Artificial Surfaces—A Structural Approach.” Materials, 11 (5) 866 (2018)CrossRef Avrămescu, R-E, Ghica, MV, Dinu-Pîrvu, C, Prisada, R, Popa, L, “Superhydrophobic Natural and Artificial Surfaces—A Structural Approach.” Materials, 11 (5) 866 (2018)CrossRef
75.
Zurück zum Zitat Manoharan, K, Bhattacharya, S, “Superhydrophobic Surfaces Review: Functional Application, Fabrication Techniques and Limitations.” J. Micromanuf., 2 (1) 59–78 (2019)CrossRef Manoharan, K, Bhattacharya, S, “Superhydrophobic Surfaces Review: Functional Application, Fabrication Techniques and Limitations.” J. Micromanuf., 2 (1) 59–78 (2019)CrossRef
76.
Zurück zum Zitat Jiaqiang, E, Jin, Y, Deng, Y, Zuo, W, Zhao, X, Han, D, Peng, Q, Zhang, Z, “Wetting Models and Working Mechanisms of Typical Surfaces Existing in Nature and their Application on Superhydrophobic Surfaces: A Review.” Adv. Mater. Interfaces, 5 1701052 (2018)CrossRef Jiaqiang, E, Jin, Y, Deng, Y, Zuo, W, Zhao, X, Han, D, Peng, Q, Zhang, Z, “Wetting Models and Working Mechanisms of Typical Surfaces Existing in Nature and their Application on Superhydrophobic Surfaces: A Review.” Adv. Mater. Interfaces, 5 1701052 (2018)CrossRef
77.
Zurück zum Zitat Sharma, V, Goyat, M, Hooda, A, Pandey, JK, Kumar, A, Gupta, R, Upadhyay, AK, Prakash, R, Kirabira, JB, Mandal, P, “Recent Progress in Nano-Oxides and CNTs Based Corrosion Resistant Superhydrophobic Coatings: A Critical Review.” Prog. Org. Coat., 140 105512 (2020)CrossRef Sharma, V, Goyat, M, Hooda, A, Pandey, JK, Kumar, A, Gupta, R, Upadhyay, AK, Prakash, R, Kirabira, JB, Mandal, P, “Recent Progress in Nano-Oxides and CNTs Based Corrosion Resistant Superhydrophobic Coatings: A Critical Review.” Prog. Org. Coat., 140 105512 (2020)CrossRef
78.
Zurück zum Zitat Kang, J-Y, Sarmadi, M, "Textile Plasma Treatment Review—Natural Polymer-Based Textiles." AATCC Rev., 4 28–32 (2004) Kang, J-Y, Sarmadi, M, "Textile Plasma Treatment Review—Natural Polymer-Based Textiles." AATCC Rev., 4 28–32 (2004)
79.
Zurück zum Zitat Park, S, Kim, J, Park, CH, “Superhydrophobic Textiles: Review of Theoretical Definitions, Fabrication and Functional Evaluation.” J. Eng. Fibers Fabrics, 10 (4) 155892501501000420 (2015) Park, S, Kim, J, Park, CH, “Superhydrophobic Textiles: Review of Theoretical Definitions, Fabrication and Functional Evaluation.” J. Eng. Fibers Fabrics, 10 (4) 155892501501000420 (2015)
80.
Zurück zum Zitat Li, S, Huang, J, Chen, Z, Chen, G, Lai, Y, “A Review on Special Wettability Textiles: Theoretical Models, Fabrication Technologies and Multifunctional Applications.” J. Mater. Chem. A, 5 (1) 31–55 (2017)CrossRef Li, S, Huang, J, Chen, Z, Chen, G, Lai, Y, “A Review on Special Wettability Textiles: Theoretical Models, Fabrication Technologies and Multifunctional Applications.” J. Mater. Chem. A, 5 (1) 31–55 (2017)CrossRef
81.
Zurück zum Zitat Wei, DW, Wei, H, Gauthier, AC, Song, J, Jin, Y, Xiao, H, “Superhydrophobic Modification of Cellulose and Cotton Textiles: Methodologies and Applications.” J. Bioresour. Bioprod., 5 1–15 (2020)CrossRef Wei, DW, Wei, H, Gauthier, AC, Song, J, Jin, Y, Xiao, H, “Superhydrophobic Modification of Cellulose and Cotton Textiles: Methodologies and Applications.” J. Bioresour. Bioprod., 5 1–15 (2020)CrossRef
82.
Zurück zum Zitat Asif, A, Hasan, MZ, “Application of Nanotechnology in Modern Textiles: A Review.” Int. J. Curr. Eng. Technol., 8 (2) 227–231 (2018) Asif, A, Hasan, MZ, “Application of Nanotechnology in Modern Textiles: A Review.” Int. J. Curr. Eng. Technol., 8 (2) 227–231 (2018)
83.
Zurück zum Zitat Caschera, D, Toro, RG, Cortese, B, Federici, F, Lombardo, D, Calandra, P, "Diamond-Like Carbon: A Versatile Material for Developing Innovative Smart Textiles Applications. A Short Review." Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali 97 (S2) 27 (2019) Caschera, D, Toro, RG, Cortese, B, Federici, F, Lombardo, D, Calandra, P, "Diamond-Like Carbon: A Versatile Material for Developing Innovative Smart Textiles Applications. A Short Review." Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali 97 (S2) 27 (2019)
84.
Zurück zum Zitat Park, S, Kim, J, Park, CH, “Influence of Micro and Nano-Scale Roughness on Hydrophobicity of a Plasma-Treated Woven Fabric.” Text. Res. J., 87 (2) 193–207 (2017)CrossRef Park, S, Kim, J, Park, CH, “Influence of Micro and Nano-Scale Roughness on Hydrophobicity of a Plasma-Treated Woven Fabric.” Text. Res. J., 87 (2) 193–207 (2017)CrossRef
85.
Zurück zum Zitat Drelich, J, Chibowski, E, “Superhydrophilic and Superwetting Surfaces: Definition and Mechanisms of Control.” Langmuir, 26 (24) 18621–18623 (2010)CrossRef Drelich, J, Chibowski, E, “Superhydrophilic and Superwetting Surfaces: Definition and Mechanisms of Control.” Langmuir, 26 (24) 18621–18623 (2010)CrossRef
86.
Zurück zum Zitat Law, K-Y, “Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right.” ACS Publ., 5 686–688 (2014) Law, K-Y, “Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right.” ACS Publ., 5 686–688 (2014)  
87.
Zurück zum Zitat Yuan, Y, Lee, TR, "Contact Angle and Wetting Properties." In: Surface Science Techniques, pp. 3–34. Springer Heidelberg (2013) Yuan, Y, Lee, TR, "Contact Angle and Wetting Properties." In: Surface Science Techniques, pp. 3–34. Springer Heidelberg (2013)
88.
Zurück zum Zitat Kwok, DY, Neumann, AW, “Contact Angle Measurement and Contact Angle Interpretation.” Adv. Colloid Interface Sci., 81 (3) 167–249 (1999)CrossRef Kwok, DY, Neumann, AW, “Contact Angle Measurement and Contact Angle Interpretation.” Adv. Colloid Interface Sci., 81 (3) 167–249 (1999)CrossRef
89.
Zurück zum Zitat Young, T, “III. An Essay on the Cohesion of Fluids.” Philos. Trans. R. Soc. Lond., 95 65–87 (1805) Young, T, “III. An Essay on the Cohesion of Fluids.” Philos. Trans. R. Soc. Lond., 95 65–87 (1805)
90.
Zurück zum Zitat Wenzel, RN, “Resistance of Solid Surfaces to Wetting by Water.” Ind. Eng. Chem., 28 (8) 988–994 (1936)CrossRef Wenzel, RN, “Resistance of Solid Surfaces to Wetting by Water.” Ind. Eng. Chem., 28 (8) 988–994 (1936)CrossRef
91.
Zurück zum Zitat Marmur, A, “Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not to Be?” Langmuir, 19 (20) 8343–8348 (2003)CrossRef Marmur, A, “Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not to Be?” Langmuir, 19 (20) 8343–8348 (2003)CrossRef
92.
Zurück zum Zitat Cassie, A, Baxter, S, “Wettability of Porous Surfaces.” Trans. Faraday Soc., 40 546–551 (1944)CrossRef Cassie, A, Baxter, S, “Wettability of Porous Surfaces.” Trans. Faraday Soc., 40 546–551 (1944)CrossRef
93.
Zurück zum Zitat Choi, W, Tuteja, A, Mabry, JM, Cohen, RE, McKinley, GH, “A Modified Cassie–Baxter Relationship to Explain Contact Angle Hysteresis and Anisotropy on Non-Wetting Textured Surfaces.” J. Colloid Interface Sci, 339 (1) 208–216 (2009)CrossRef Choi, W, Tuteja, A, Mabry, JM, Cohen, RE, McKinley, GH, “A Modified Cassie–Baxter Relationship to Explain Contact Angle Hysteresis and Anisotropy on Non-Wetting Textured Surfaces.” J. Colloid Interface Sci, 339 (1) 208–216 (2009)CrossRef
94.
Zurück zum Zitat Miwa, M, Nakajima, A, Fujishima, A, Hashimoto, K, Watanabe, T, “Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces.” Langmuir, 16 (13) 5754–5760 (2000)CrossRef Miwa, M, Nakajima, A, Fujishima, A, Hashimoto, K, Watanabe, T, “Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces.” Langmuir, 16 (13) 5754–5760 (2000)CrossRef
95.
Zurück zum Zitat Dupont, J-B, Legendre, D, “Numerical Simulation of Static and Sliding Drop With Contact Angle Hysteresis.” J. Comput. Phys., 229 (7) 2453–2478 (2010)CrossRef Dupont, J-B, Legendre, D, “Numerical Simulation of Static and Sliding Drop With Contact Angle Hysteresis.” J. Comput. Phys., 229 (7) 2453–2478 (2010)CrossRef
96.
Zurück zum Zitat Lam, C, Wu, R, Li, D, Hair, M, Neumann, A, “Study of the Advancing and Receding Contact Angles: Liquid Sorption as a Cause of Contact Angle Hysteresis.” Adv. Colloid Interface Sci., 96 (1–3) 169–191 (2002)CrossRef Lam, C, Wu, R, Li, D, Hair, M, Neumann, A, “Study of the Advancing and Receding Contact Angles: Liquid Sorption as a Cause of Contact Angle Hysteresis.” Adv. Colloid Interface Sci., 96 (1–3) 169–191 (2002)CrossRef
97.
Zurück zum Zitat Eral, H, Oh, J, “Contact Angle Hysteresis: A Review of Fundamentals and Applications.” Colloid Polym. Sci., 291 (2) 247–260 (2013)CrossRef Eral, H, Oh, J, “Contact Angle Hysteresis: A Review of Fundamentals and Applications.” Colloid Polym. Sci., 291 (2) 247–260 (2013)CrossRef
98.
Zurück zum Zitat Quéré, D, “Non-Sticking Drops.” Rep. Prog. Phys., 68 (11) 2495 (2005)CrossRef Quéré, D, “Non-Sticking Drops.” Rep. Prog. Phys., 68 (11) 2495 (2005)CrossRef
99.
Zurück zum Zitat Gabbar, HA, Aboughaly, M, Stoute, C, “DC Thermal Plasma Design and Utilization for the Low Density Polyethylene to Diesel Oil Pyrolysis Reaction.” Energies, 10 (6) 784 (2017)CrossRef Gabbar, HA, Aboughaly, M, Stoute, C, “DC Thermal Plasma Design and Utilization for the Low Density Polyethylene to Diesel Oil Pyrolysis Reaction.” Energies, 10 (6) 784 (2017)CrossRef
100.
Zurück zum Zitat Murphy, AB, Uhrlandt, D, “Foundations of High-Pressure Thermal Plasmas.” Plasma Sour. Sci. Technol., 27 (6) 063001 (2018)CrossRef Murphy, AB, Uhrlandt, D, “Foundations of High-Pressure Thermal Plasmas.” Plasma Sour. Sci. Technol., 27 (6) 063001 (2018)CrossRef
101.
Zurück zum Zitat Surov, A, Popov, S, Serba, E, Pavlov, A, Nakonechny, GV, Spodobin, V, Nikonov, A, Subbotin, D, Borovskoy, A, “High Voltage AC Plasma Torches with Long Electric Arcs for Plasma-Chemical Applications.” Proc. J. Phys. Conf. Ser. 825 012016 (2017) Surov, A, Popov, S, Serba, E, Pavlov, A, Nakonechny, GV, Spodobin, V, Nikonov, A, Subbotin, D, Borovskoy, A, “High Voltage AC Plasma Torches with Long Electric Arcs for Plasma-Chemical Applications.” Proc. J. Phys. Conf. Ser. 825 012016 (2017)  
102.
Zurück zum Zitat Chazelas, C, Trelles, J, Vardelle, A, “The Main Issues to Address in Modeling Plasma Spray Torch Operation.” J. Therm. Spray Technol., 26 (1–2) 3–11 (2017)CrossRef Chazelas, C, Trelles, J, Vardelle, A, “The Main Issues to Address in Modeling Plasma Spray Torch Operation.” J. Therm. Spray Technol., 26 (1–2) 3–11 (2017)CrossRef
103.
Zurück zum Zitat Mostaghimi, J, Boulos, MI, “Thermal Plasma Sources: How Well are They Adopted to Process Needs?” Plasma Chem. Plasma Process., 35 (3) 421–436 (2015)CrossRef Mostaghimi, J, Boulos, MI, “Thermal Plasma Sources: How Well are They Adopted to Process Needs?” Plasma Chem. Plasma Process., 35 (3) 421–436 (2015)CrossRef
104.
Zurück zum Zitat Miao, L, Grishin, YM, “Numerical Investigation into the Characteristics of a Vortex in an Argon Inductively Coupled Plasma.” Plasma Sour. Sci. Technol., 27 (11) 115008 (2018)CrossRef Miao, L, Grishin, YM, “Numerical Investigation into the Characteristics of a Vortex in an Argon Inductively Coupled Plasma.” Plasma Sour. Sci. Technol., 27 (11) 115008 (2018)CrossRef
105.
Zurück zum Zitat Boulos, MI, “The Role of Transport Phenomena and Modeling in the Development of Thermal Plasma Technology.” Plasma Chem. Plasma Process., 36 (1) 3–28 (2016)CrossRef Boulos, MI, “The Role of Transport Phenomena and Modeling in the Development of Thermal Plasma Technology.” Plasma Chem. Plasma Process., 36 (1) 3–28 (2016)CrossRef
106.
Zurück zum Zitat Živný, O, Hlína, M, Serov, A, Halinouski, A, Mašláni, A, “Abatement of Tetrafluormethane Using Thermal Steam Plasma.” Plasma Chem. Plasma Process., 40 (1) 309–323 (2020)CrossRef Živný, O, Hlína, M, Serov, A, Halinouski, A, Mašláni, A, “Abatement of Tetrafluormethane Using Thermal Steam Plasma.” Plasma Chem. Plasma Process., 40 (1) 309–323 (2020)CrossRef
107.
Zurück zum Zitat Trelles, JP, “Nonequilibrium Phenomena in (Quasi-) Thermal Plasma Flows.” Plasma Chem. Plasma Process., 40 1–22 (2019) Trelles, JP, “Nonequilibrium Phenomena in (Quasi-) Thermal Plasma Flows.” Plasma Chem. Plasma Process., 40 1–22 (2019)
108.
Zurück zum Zitat Kim, K, Kim, T, “Nanofabrication by Thermal Plasma Jets: From Nanoparticles to Low-Dimensional Nanomaterials.” J. Appl. Phys., 125 (7) 070901 (2019)CrossRef Kim, K, Kim, T, “Nanofabrication by Thermal Plasma Jets: From Nanoparticles to Low-Dimensional Nanomaterials.” J. Appl. Phys., 125 (7) 070901 (2019)CrossRef
109.
Zurück zum Zitat Wang, C, Song, M, Chen, X, Li, D, Xia, W, Xia, W, “Effects of Buffer Gases on Graphene Flakes Synthesis in Thermal Plasma Process at Atmospheric Pressure.” Nanomaterials, 10 (2) 309 (2020)CrossRef Wang, C, Song, M, Chen, X, Li, D, Xia, W, Xia, W, “Effects of Buffer Gases on Graphene Flakes Synthesis in Thermal Plasma Process at Atmospheric Pressure.” Nanomaterials, 10 (2) 309 (2020)CrossRef
110.
Zurück zum Zitat Baidya, R, Ghosh, SK, "Plasma Gasification Technology for Energy Recovery from Waste." J. Solid Waste Technol. Manag., 42 794–805 (2016) Baidya, R, Ghosh, SK, "Plasma Gasification Technology for Energy Recovery from Waste." J. Solid Waste Technol. Manag., 42 794–805 (2016)
111.
Zurück zum Zitat Mustafa, MF, Fu, X, Lu, W, Liu, Y, Abbas, Y, Wang, H, Arslan, MT, “Application Of Non-Thermal Plasma Technology on Fugitive Methane Destruction: Configuration and Optimization of Double Dielectric Barrier Discharge Reactor.” J. Clean. Prod., 174 670–677 (2018)CrossRef Mustafa, MF, Fu, X, Lu, W, Liu, Y, Abbas, Y, Wang, H, Arslan, MT, “Application Of Non-Thermal Plasma Technology on Fugitive Methane Destruction: Configuration and Optimization of Double Dielectric Barrier Discharge Reactor.” J. Clean. Prod., 174 670–677 (2018)CrossRef
112.
Zurück zum Zitat Zulazlan, A, Lim, M, Jayapalan, KK, Lai, K, Chin, O, “Electrical Characteristics of Non-Thermal Dielectric Barrier Discharge Devices with Coaxial Wire-Cylinder and Wire-Windings Configurations.” J. Telecommun. Electron. Comput. Eng., 8 (7) 63–66 (2016) Zulazlan, A, Lim, M, Jayapalan, KK, Lai, K, Chin, O, “Electrical Characteristics of Non-Thermal Dielectric Barrier Discharge Devices with Coaxial Wire-Cylinder and Wire-Windings Configurations.” J. Telecommun. Electron. Comput. Eng., 8 (7) 63–66 (2016)
113.
Zurück zum Zitat Demkin, V, Melnichuk, S, Demkin, O, Kingma, H, Van de Berg, R, “Spectroscopic Studies of Non-Thermal Plasma Jet at Atmospheric Pressure Formed in Low-Current Nonsteady-State Plasmatron for Biomedical Applications.” Phys. Plasmas, 23 (4) 043509 (2016)CrossRef Demkin, V, Melnichuk, S, Demkin, O, Kingma, H, Van de Berg, R, “Spectroscopic Studies of Non-Thermal Plasma Jet at Atmospheric Pressure Formed in Low-Current Nonsteady-State Plasmatron for Biomedical Applications.” Phys. Plasmas, 23 (4) 043509 (2016)CrossRef
114.
Zurück zum Zitat Nishime, T, Borges, A, Koga-Ito, C, Machida, M, Hein, L, Kostov, K, “Non-Thermal Atmospheric Pressure Plasma Jet Applied to Inactivation of Different Microorganisms.” Surf. Coat. Technol., 312 19–24 (2017)CrossRef Nishime, T, Borges, A, Koga-Ito, C, Machida, M, Hein, L, Kostov, K, “Non-Thermal Atmospheric Pressure Plasma Jet Applied to Inactivation of Different Microorganisms.” Surf. Coat. Technol., 312 19–24 (2017)CrossRef
115.
Zurück zum Zitat Gamaleev, V, Iwata, N, Ito, G, Hori, M, Hiramatsu, M, Ito, M, “Scalable Treatment of Flowing Organic Liquids Using Ambient-Air Glow Discharge for Agricultural Applications.” Appl. Sci., 10 (3) 801 (2020)CrossRef Gamaleev, V, Iwata, N, Ito, G, Hori, M, Hiramatsu, M, Ito, M, “Scalable Treatment of Flowing Organic Liquids Using Ambient-Air Glow Discharge for Agricultural Applications.” Appl. Sci., 10 (3) 801 (2020)CrossRef
116.
Zurück zum Zitat Kim, HH, “Nonthermal Plasma Processing for Air-Pollution Control: A Historical Review, Current Issues, and Future Prospects.” Plasma Process. Polym., 1 (2) 91–110 (2004)CrossRef Kim, HH, “Nonthermal Plasma Processing for Air-Pollution Control: A Historical Review, Current Issues, and Future Prospects.” Plasma Process. Polym., 1 (2) 91–110 (2004)CrossRef
117.
Zurück zum Zitat Napartovich, A, “Overview of Atmospheric Pressure Discharges Producing Nonthermal Plasma.” Plasmas Polym., 6 (1–2) 1–14 (2001)CrossRef Napartovich, A, “Overview of Atmospheric Pressure Discharges Producing Nonthermal Plasma.” Plasmas Polym., 6 (1–2) 1–14 (2001)CrossRef
118.
Zurück zum Zitat Mahmoudabadi, ZD, Eslami, E, Narimisa, M, “Synthesis of Ag/TiO2 Nanocomposite via Plasma Liquid Interactions: Improved Performance as Photoanode in Dye-Sensitized Solar Cell.” J. Colloid Interface Sci., 529 538–546 (2018)CrossRef Mahmoudabadi, ZD, Eslami, E, Narimisa, M, “Synthesis of Ag/TiO2 Nanocomposite via Plasma Liquid Interactions: Improved Performance as Photoanode in Dye-Sensitized Solar Cell.” J. Colloid Interface Sci., 529 538–546 (2018)CrossRef
119.
Zurück zum Zitat Akishev, Y, Grushin, M, Napartovich, A, Trushkin, N, “Novel AC and DC Non-Thermal Plasma Sources for Cold Surface Treatment of Polymer Films and Fabrics at Atmospheric Pressure.” Plasmas Polym., 7 (3) 261–289 (2002)CrossRef Akishev, Y, Grushin, M, Napartovich, A, Trushkin, N, “Novel AC and DC Non-Thermal Plasma Sources for Cold Surface Treatment of Polymer Films and Fabrics at Atmospheric Pressure.” Plasmas Polym., 7 (3) 261–289 (2002)CrossRef
120.
Zurück zum Zitat Moisan, M, Barbeau, J, Moreau, S, Pelletier, J, Tabrizian, M, Yahia, LH, “Low-Temperature Sterilization Using Gas Plasmas: A Review of the Experiments and an Analysis of the Inactivation Mechanisms.” Int. J. Pharma., 226 (1–2) 1–21 (2001)CrossRef Moisan, M, Barbeau, J, Moreau, S, Pelletier, J, Tabrizian, M, Yahia, LH, “Low-Temperature Sterilization Using Gas Plasmas: A Review of the Experiments and an Analysis of the Inactivation Mechanisms.” Int. J. Pharma., 226 (1–2) 1–21 (2001)CrossRef
121.
Zurück zum Zitat Mahmoudabadi, ZD, Eslami, E, “Synthesis of TiO2 Nanotubes by Atmospheric Microplasma Electrochemistry: Fabrication, Characterization and TiO2 Oxide Film Properties.” Electrochim. Acta, 245 715–723 (2017)CrossRef Mahmoudabadi, ZD, Eslami, E, “Synthesis of TiO2 Nanotubes by Atmospheric Microplasma Electrochemistry: Fabrication, Characterization and TiO2 Oxide Film Properties.” Electrochim. Acta, 245 715–723 (2017)CrossRef
122.
Zurück zum Zitat Bhat, N, Netravali, A, Gore, A, Sathianarayanan, M, Arolkar, G, Deshmukh, R, “Surface Modification of Cotton Fabrics Using Plasma Technology.” Text. Res. J., 81 (10) 1014–1026 (2011)CrossRef Bhat, N, Netravali, A, Gore, A, Sathianarayanan, M, Arolkar, G, Deshmukh, R, “Surface Modification of Cotton Fabrics Using Plasma Technology.” Text. Res. J., 81 (10) 1014–1026 (2011)CrossRef
123.
Zurück zum Zitat Morent, R, De Geyter, N, Leys, C, Gengembre, L, Payen, E, “Surface Modification of Non-Woven Textiles Using a Dielectric Barrier Discharge Operating in Air, Helium and Argon at Medium Pressure.” Text. Res. J., 77 (7) 471–488 (2007)CrossRef Morent, R, De Geyter, N, Leys, C, Gengembre, L, Payen, E, “Surface Modification of Non-Woven Textiles Using a Dielectric Barrier Discharge Operating in Air, Helium and Argon at Medium Pressure.” Text. Res. J., 77 (7) 471–488 (2007)CrossRef
124.
Zurück zum Zitat Verschuren, J, Kiekens, P, Leys, C, “Textile-Specific Properties that Influence Plasma Treatment, Effect Creation and Effect Characterization.” Text. Res. J., 77 (10) 727–733 (2007)CrossRef Verschuren, J, Kiekens, P, Leys, C, “Textile-Specific Properties that Influence Plasma Treatment, Effect Creation and Effect Characterization.” Text. Res. J., 77 (10) 727–733 (2007)CrossRef
125.
Zurück zum Zitat Belhaj Khalifa, I, Ladhari, N, “Hydrophobic Behavior of Cotton Fabric Activated with Air Atmospheric-Pressure Plasma.” J. Text. Inst., 111 (8) 1191–1197 (2020)CrossRef Belhaj Khalifa, I, Ladhari, N, “Hydrophobic Behavior of Cotton Fabric Activated with Air Atmospheric-Pressure Plasma.” J. Text. Inst., 111 (8) 1191–1197 (2020)CrossRef
126.
Zurück zum Zitat Lam, Y, Kan, C, Yuen, C, “Physical and Chemical Analysis of Plasma-Treated Cotton Fabric Subjected to Wrinkle-Resistant Finishing.” Cellulose, 18 (2) 493–503 (2011)CrossRef Lam, Y, Kan, C, Yuen, C, “Physical and Chemical Analysis of Plasma-Treated Cotton Fabric Subjected to Wrinkle-Resistant Finishing.” Cellulose, 18 (2) 493–503 (2011)CrossRef
127.
Zurück zum Zitat Caschera, D, Mezzi, A, Cerri, L, de Caro, T, Riccucci, C, Ingo, GM, Padeletti, G, Biasiucci, M, Gigli, G, Cortese, B, “Effects of Plasma Treatments for Improving Extreme Wettability Behavior of Cotton Fabrics.” Cellulose, 21 (1) 741–756 (2014)CrossRef Caschera, D, Mezzi, A, Cerri, L, de Caro, T, Riccucci, C, Ingo, GM, Padeletti, G, Biasiucci, M, Gigli, G, Cortese, B, “Effects of Plasma Treatments for Improving Extreme Wettability Behavior of Cotton Fabrics.” Cellulose, 21 (1) 741–756 (2014)CrossRef
128.
Zurück zum Zitat Follain, N, Saiah, R, Fatyeyeva, K, Randrianandrasana, N, Leblanc, N, Marais, S, Lecamp, L, “Hydrophobic Surface Treatments of Sunflower Pith Using Eco-Friendly Processes.” Cellulose, 22 (1) 245–259 (2015)CrossRef Follain, N, Saiah, R, Fatyeyeva, K, Randrianandrasana, N, Leblanc, N, Marais, S, Lecamp, L, “Hydrophobic Surface Treatments of Sunflower Pith Using Eco-Friendly Processes.” Cellulose, 22 (1) 245–259 (2015)CrossRef
129.
Zurück zum Zitat Cabrales, L, Abidi, N, “Microwave Plasma Induced Grafting of Oleic Acid on Cotton Fabric Surfaces.” Appl. Surf. Sci., 258 (10) 4636–4641 (2012)CrossRef Cabrales, L, Abidi, N, “Microwave Plasma Induced Grafting of Oleic Acid on Cotton Fabric Surfaces.” Appl. Surf. Sci., 258 (10) 4636–4641 (2012)CrossRef
130.
Zurück zum Zitat Samanta, KK, Joshi, AG, Jassal, M, Agrawal, AK, “Hydrophobic Functionalization of Cellulosic Substrate by Tetrafluoroethane Dielectric Barrier Discharge Plasma at Atmospheric Pressure.” Carbohydr. Polym., 253 117272 (2020)CrossRef Samanta, KK, Joshi, AG, Jassal, M, Agrawal, AK, “Hydrophobic Functionalization of Cellulosic Substrate by Tetrafluoroethane Dielectric Barrier Discharge Plasma at Atmospheric Pressure.” Carbohydr. Polym., 253 117272 (2020)CrossRef
131.
Zurück zum Zitat Jain, V, Nigam, K, Tanwani, N, Adam, S, Nimish, S, Nema, S, "Novel High Voltage Pulsing to Generate Uniform Glow Discharge Air Plasma for Environment Friendly Inline Treatment of Textile." In: Proceedings of the 2019 IEEE Pulsed Power and Plasma Science (PPPS) (2019) Jain, V, Nigam, K, Tanwani, N, Adam, S, Nimish, S, Nema, S, "Novel High Voltage Pulsing to Generate Uniform Glow Discharge Air Plasma for Environment Friendly Inline Treatment of Textile." In: Proceedings of the 2019 IEEE Pulsed Power and Plasma Science (PPPS) (2019)
132.
Zurück zum Zitat Lu, X, Laroussi, M, Puech, V, “On Atmospheric-Pressure Non-Equilibrium Plasma Jets and Plasma Bullets.” Plasma Sour. Sci. Technol., 21 (3) 034005 (2012)CrossRef Lu, X, Laroussi, M, Puech, V, “On Atmospheric-Pressure Non-Equilibrium Plasma Jets and Plasma Bullets.” Plasma Sour. Sci. Technol., 21 (3) 034005 (2012)CrossRef
133.
Zurück zum Zitat Laroussi, M, Akan, T, “Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review.” Plasma Process. Polym., 4 (9) 777–788 (2007)CrossRef Laroussi, M, Akan, T, “Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review.” Plasma Process. Polym., 4 (9) 777–788 (2007)CrossRef
134.
Zurück zum Zitat Peran, J, Ercegović Ražić, S, “Application of Atmospheric Pressure Plasma Technology for Textile Surface Modification.” Text. Res. J., 90 (9–10) 1174–1197 (2020)CrossRef Peran, J, Ercegović Ražić, S, “Application of Atmospheric Pressure Plasma Technology for Textile Surface Modification.” Text. Res. J., 90 (9–10) 1174–1197 (2020)CrossRef
135.
Zurück zum Zitat Nidhi, S, Abha, B, “Plasma Technology in Textiles.” Asian J. Home Sci., 11 (1) 261–269 (2016)CrossRef Nidhi, S, Abha, B, “Plasma Technology in Textiles.” Asian J. Home Sci., 11 (1) 261–269 (2016)CrossRef
136.
Zurück zum Zitat Teshima, K, Sugimura, H, Inoue, Y, Takai, O, Takano, A, “Ultra-Water-Repellent Poly (Ethylene Terephthalate) Substrates.” Langmuir, 19 (25) 10624–10627 (2003)CrossRef Teshima, K, Sugimura, H, Inoue, Y, Takai, O, Takano, A, “Ultra-Water-Repellent Poly (Ethylene Terephthalate) Substrates.” Langmuir, 19 (25) 10624–10627 (2003)CrossRef
137.
Zurück zum Zitat Oh, J-H, Ko, T-J, Moon, M-W, Park, CH, “Nanostructured Fabric with Robust Superhydrophobicity Induced by a Thermal Hydrophobic Ageing Process.” RSC Adv., 7 (41) 25597–25604 (2017)CrossRef Oh, J-H, Ko, T-J, Moon, M-W, Park, CH, “Nanostructured Fabric with Robust Superhydrophobicity Induced by a Thermal Hydrophobic Ageing Process.” RSC Adv., 7 (41) 25597–25604 (2017)CrossRef
138.
Zurück zum Zitat Borcia, C, Punga, I, Borcia, G, “Surface Properties and Hydrophobic Recovery of Polymers Treated by Atmospheric-Pressure Plasma.” Appl. Surf. Sci., 317 103–110 (2014)CrossRef Borcia, C, Punga, I, Borcia, G, “Surface Properties and Hydrophobic Recovery of Polymers Treated by Atmospheric-Pressure Plasma.” Appl. Surf. Sci., 317 103–110 (2014)CrossRef
139.
Zurück zum Zitat Li, Y, Lei, M, “Nanotexturing and Wettability Ageing of Polypropylene Surfaces Modified by Oxygen Capacitively Coupled Radio Frequency Plasma.” J. Mater. Sci. Technol., 30 (10) 965–972 (2014)CrossRef Li, Y, Lei, M, “Nanotexturing and Wettability Ageing of Polypropylene Surfaces Modified by Oxygen Capacitively Coupled Radio Frequency Plasma.” J. Mater. Sci. Technol., 30 (10) 965–972 (2014)CrossRef
140.
Zurück zum Zitat Wu, M, Ma, B, Pan, T, Chen, S, Sun, J, “Silver-Nanoparticle-Colored Cotton Fabrics with Tunable Colors and Durable Antibacterial and Self-Healing Superhydrophobic Properties.” Adv. Funct. Mater., 26 (4) 569–576 (2016)CrossRef Wu, M, Ma, B, Pan, T, Chen, S, Sun, J, “Silver-Nanoparticle-Colored Cotton Fabrics with Tunable Colors and Durable Antibacterial and Self-Healing Superhydrophobic Properties.” Adv. Funct. Mater., 26 (4) 569–576 (2016)CrossRef
141.
Zurück zum Zitat Zhang, Y, Li, Y, Shao, J, Zou, C, “Fabrication of Superhydrophobic Fluorine-Free Films on Cotton Fabrics Through Plasma-Induced Grafting Polymerization of 1, 3, 5, 7-Tetravinyl-1, 3, 5, 7-Tetramethylcyclotetrasiloxane.” Surf. Coat. Technol., 276 16–22 (2015)CrossRef Zhang, Y, Li, Y, Shao, J, Zou, C, “Fabrication of Superhydrophobic Fluorine-Free Films on Cotton Fabrics Through Plasma-Induced Grafting Polymerization of 1, 3, 5, 7-Tetravinyl-1, 3, 5, 7-Tetramethylcyclotetrasiloxane.” Surf. Coat. Technol., 276 16–22 (2015)CrossRef
142.
Zurück zum Zitat Li, Y, Zou, C, Shao, J, Li, Yn, “Fabrication of Superhydrophobic Cotton Fabrics Through Wrapping Silica with Plasma-Induced Grafting Polymerization.” Text. Res. J., 89 0040517517748492 (2017) Li, Y, Zou, C, Shao, J, Li, Yn, “Fabrication of Superhydrophobic Cotton Fabrics Through Wrapping Silica with Plasma-Induced Grafting Polymerization.” Text. Res. J., 89 0040517517748492 (2017)
143.
Zurück zum Zitat Gorjanc, M, Simončič, B, Vasiljević, J, Vesel, A, Mozetic, M, "Plasma and Sol-Gel Technology for Creating Nanostructured Surfaces of Fibrous Polymers." In: Proceedings of the International Conference Nanomaterials: Applications and Properties (2012) Gorjanc, M, Simončič, B, Vasiljević, J, Vesel, A, Mozetic, M, "Plasma and Sol-Gel Technology for Creating Nanostructured Surfaces of Fibrous Polymers." In: Proceedings of the International Conference Nanomaterials: Applications and Properties (2012)
144.
Zurück zum Zitat Vasiljević, J, Gorjanc, M, Tomšič, B, Orel, B, Jerman, I, Mozetič, M, Vesel, A, Simončič, B, “The Surface Modification of Cellulose Fibres to Create Super-Hydrophobic, Oleophobic and Self-Cleaning Properties.” Cellulose, 20 (1) 277–289 (2013)CrossRef Vasiljević, J, Gorjanc, M, Tomšič, B, Orel, B, Jerman, I, Mozetič, M, Vesel, A, Simončič, B, “The Surface Modification of Cellulose Fibres to Create Super-Hydrophobic, Oleophobic and Self-Cleaning Properties.” Cellulose, 20 (1) 277–289 (2013)CrossRef
145.
Zurück zum Zitat Zhang, M, Pang, J, Bao, W, Zhang, W, Gao, H, Wang, C, Shi, J, Li, J, “Antimicrobial Cotton Textiles with Robust Superhydrophobicity via Plasma for Oily Water Separation.” Appl. Surf. Sci., 419 16–23 (2017)CrossRef Zhang, M, Pang, J, Bao, W, Zhang, W, Gao, H, Wang, C, Shi, J, Li, J, “Antimicrobial Cotton Textiles with Robust Superhydrophobicity via Plasma for Oily Water Separation.” Appl. Surf. Sci., 419 16–23 (2017)CrossRef
146.
Zurück zum Zitat Nguyen-Tri, P, Altiparmak, F, Nguyen, N, Tuduri, L, Ouellet-Plamondon, CM, Prud’homme, RE, “Robust Superhydrophobic Cotton Fibers Prepared by Simple Dip-Coating Approach Using Chemical and Plasma-Etching Pretreatments.” ACS Omega, 4 (4) 7829–7837 (2019)CrossRef Nguyen-Tri, P, Altiparmak, F, Nguyen, N, Tuduri, L, Ouellet-Plamondon, CM, Prud’homme, RE, “Robust Superhydrophobic Cotton Fibers Prepared by Simple Dip-Coating Approach Using Chemical and Plasma-Etching Pretreatments.” ACS Omega, 4 (4) 7829–7837 (2019)CrossRef
147.
Zurück zum Zitat Liu, S, Zhou, H, Wang, H, Zhao, Y, Shao, H, Xu, Z, Feng, Z, Liu, D, Lin, T, “Argon Plasma Treatment of Fluorine-Free Silane Coatings: A Facile, Environment-Friendly Method to Prepare Durable, Superhydrophobic Fabrics.” Adv. Mater. Interfaces, 4 (11) 1700027 (2017)CrossRef Liu, S, Zhou, H, Wang, H, Zhao, Y, Shao, H, Xu, Z, Feng, Z, Liu, D, Lin, T, “Argon Plasma Treatment of Fluorine-Free Silane Coatings: A Facile, Environment-Friendly Method to Prepare Durable, Superhydrophobic Fabrics.” Adv. Mater. Interfaces, 4 (11) 1700027 (2017)CrossRef
148.
Zurück zum Zitat Grace, JM, Gerenser, LJ, “Plasma Treatment of Polymers.” J. Dispers. Sci. Technol., 24 (3–4) 305–341 (2003)CrossRef Grace, JM, Gerenser, LJ, “Plasma Treatment of Polymers.” J. Dispers. Sci. Technol., 24 (3–4) 305–341 (2003)CrossRef
149.
Zurück zum Zitat Liu, S, Zhou, H, Wang, H, Yang, W, Shao, H, Fu, S, Zhao, Y, Liu, D, Feng, Z, Lin, T, “Argon-Plasma Reinforced Superamphiphobic Fabrics.” Small, 13 (40) 1701891 (2017)CrossRef Liu, S, Zhou, H, Wang, H, Yang, W, Shao, H, Fu, S, Zhao, Y, Liu, D, Feng, Z, Lin, T, “Argon-Plasma Reinforced Superamphiphobic Fabrics.” Small, 13 (40) 1701891 (2017)CrossRef
150.
Zurück zum Zitat Sigurdsson, S, Shishoo, R, “Surface Properties of Polymers Treated with Tetrafluoromethane Plasma.” J. Appl. Polym. Sci., 66 (8) 1591–1601 (1997)CrossRef Sigurdsson, S, Shishoo, R, “Surface Properties of Polymers Treated with Tetrafluoromethane Plasma.” J. Appl. Polym. Sci., 66 (8) 1591–1601 (1997)CrossRef
151.
Zurück zum Zitat Li, S, Jinjin, D, “Improvement of Hydrophobic Properties of Silk and Cotton by Hexafluoropropene Plasma Treatment.” Appl. Surf. Sci., 253 (11) 5051–5055 (2007)CrossRef Li, S, Jinjin, D, “Improvement of Hydrophobic Properties of Silk and Cotton by Hexafluoropropene Plasma Treatment.” Appl. Surf. Sci., 253 (11) 5051–5055 (2007)CrossRef
152.
Zurück zum Zitat Sun, D, Stylios, G, “Fabric Surface Properties Affected by Low Temperature Plasma Treatment.” J. Mater. Process. Technol., 173 (2) 172–177 (2006)CrossRef Sun, D, Stylios, G, “Fabric Surface Properties Affected by Low Temperature Plasma Treatment.” J. Mater. Process. Technol., 173 (2) 172–177 (2006)CrossRef
153.
Zurück zum Zitat Panda, PK, Jassal, M, Agrawal, AK, “Influence of Precursor Functionality on In Situ Reaction Dynamics in Atmospheric Pressure Plasma.” Plasma Chem. Plasma Process., 35 (4) 677–695 (2015)CrossRef Panda, PK, Jassal, M, Agrawal, AK, “Influence of Precursor Functionality on In Situ Reaction Dynamics in Atmospheric Pressure Plasma.” Plasma Chem. Plasma Process., 35 (4) 677–695 (2015)CrossRef
154.
Zurück zum Zitat Parida, D, Jassal, M, Agarwal, AK, “Functionalization of Cotton by In-Situ Reaction of Styrene in Atmospheric Pressure Plasma Zone.” Plasma Chem. Plasma Process., 32 (6) 1259–1274 (2012)CrossRef Parida, D, Jassal, M, Agarwal, AK, “Functionalization of Cotton by In-Situ Reaction of Styrene in Atmospheric Pressure Plasma Zone.” Plasma Chem. Plasma Process., 32 (6) 1259–1274 (2012)CrossRef
155.
Zurück zum Zitat Riccardi, C, Barni, R, Fontanesi, M, Marcandalli, B, Massafra, M, Selli, E, Mazzone, G, “A SF6 RF Plasma Reactor for Research on Textile Treatment.” Plasma Sour. Sci. Technol., 10 (1) 92 (2001)CrossRef Riccardi, C, Barni, R, Fontanesi, M, Marcandalli, B, Massafra, M, Selli, E, Mazzone, G, “A SF6 RF Plasma Reactor for Research on Textile Treatment.” Plasma Sour. Sci. Technol., 10 (1) 92 (2001)CrossRef
156.
Zurück zum Zitat Hayashi, M, Nimura, T, “Importance of Attachment Cross-Sections of F-Formation for the Effective Ionisation Coefficients in SF6.” J. Phys. D Appl. Phys., 17 (11) 2215 (1984)CrossRef Hayashi, M, Nimura, T, “Importance of Attachment Cross-Sections of F-Formation for the Effective Ionisation Coefficients in SF6.” J. Phys. D Appl. Phys., 17 (11) 2215 (1984)CrossRef
157.
Zurück zum Zitat Chaivan, P, Pasaja, N, Boonyawan, D, Suanpoot, P, Vilaithong, T, “Low-Temperature Plasma Treatment for Hydrophobicity Improvement of Silk.” Surf. Coat. Technol., 193 (1–3) 356–360 (2005)CrossRef Chaivan, P, Pasaja, N, Boonyawan, D, Suanpoot, P, Vilaithong, T, “Low-Temperature Plasma Treatment for Hydrophobicity Improvement of Silk.” Surf. Coat. Technol., 193 (1–3) 356–360 (2005)CrossRef
158.
Zurück zum Zitat Hodak, SK, Supasai, T, Paosawatyanyong, B, Kamlangkla, K, Pavarajarn, V, “Enhancement of the Hydrophobicity of Silk Fabrics by SF6 Plasma.” Appl. Surf. Sci., 254 (15) 4744–4749 (2008)CrossRef Hodak, SK, Supasai, T, Paosawatyanyong, B, Kamlangkla, K, Pavarajarn, V, “Enhancement of the Hydrophobicity of Silk Fabrics by SF6 Plasma.” Appl. Surf. Sci., 254 (15) 4744–4749 (2008)CrossRef
159.
Zurück zum Zitat Supasai, T, Hodak, S, Paosawatyanyong, B, “Effect of SF6 Plasma Treatment on Hydrophobicity Improvement of Fabrics.” Jurnal Fizik Malaysia, 28 (1 & 2) 1–6 (2007) Supasai, T, Hodak, S, Paosawatyanyong, B, “Effect of SF6 Plasma Treatment on Hydrophobicity Improvement of Fabrics.” Jurnal Fizik Malaysia, 28 (1 & 2) 1–6 (2007)
160.
Zurück zum Zitat Thongphud, A, Paosawatyanyong, B, Visal-Athaphand, P, Supaphol, P, "Improvement of Hydrophobic Properties of the Electrospun PVA Fabrics by SF6 Plasma Treatment." Proc. Adv. Mater. Res., 55 625-628 (2008) Thongphud, A, Paosawatyanyong, B, Visal-Athaphand, P, Supaphol, P, "Improvement of Hydrophobic Properties of the Electrospun PVA Fabrics by SF6 Plasma Treatment." Proc. Adv. Mater. Res., 55 625-628 (2008)
161.
Zurück zum Zitat Vaswani, S, Koskinen, J, Hess, DW, “Surface Modification of Paper and Cellulose by Plasma-Assisted Deposition of Fluorocarbon Films.” Surf. Coat. Technol., 195 (2–3) 121–129 (2005)CrossRef Vaswani, S, Koskinen, J, Hess, DW, “Surface Modification of Paper and Cellulose by Plasma-Assisted Deposition of Fluorocarbon Films.” Surf. Coat. Technol., 195 (2–3) 121–129 (2005)CrossRef
162.
Zurück zum Zitat Yoon, YI, Moon, HS, Lyoo, WS, Lee, TS, Park, WH, “Superhydrophobicity of Cellulose Triacetate Fibrous Mats Produced by Electrospinning and Plasma Treatment.” Carbohydr. Polym., 75 (2) 246–250 (2009)CrossRef Yoon, YI, Moon, HS, Lyoo, WS, Lee, TS, Park, WH, “Superhydrophobicity of Cellulose Triacetate Fibrous Mats Produced by Electrospinning and Plasma Treatment.” Carbohydr. Polym., 75 (2) 246–250 (2009)CrossRef
163.
Zurück zum Zitat Kim, SH, Kim, J-H, Kang, B-K, Uhm, HS, “Superhydrophobic CFx Coating via In-Line Atmospheric RF Plasma of He−CF4−H2.” Langmuir, 21 (26) 12213–12217 (2005)CrossRef Kim, SH, Kim, J-H, Kang, B-K, Uhm, HS, “Superhydrophobic CFx Coating via In-Line Atmospheric RF Plasma of He−CF4−H2.” Langmuir, 21 (26) 12213–12217 (2005)CrossRef
164.
Zurück zum Zitat Ramamoorthy, A, El-Shafei, A, Hauser, P, “Plasma Induced Graft Polymerization of C6 Fluorocarbons on Cotton Fabrics for Sustainable Finishing Applications.” Plasma Proces. Polym., 10 (5) 430–443 (2013)CrossRef Ramamoorthy, A, El-Shafei, A, Hauser, P, “Plasma Induced Graft Polymerization of C6 Fluorocarbons on Cotton Fabrics for Sustainable Finishing Applications.” Plasma Proces. Polym., 10 (5) 430–443 (2013)CrossRef
165.
Zurück zum Zitat Samanta, KK, Joshi, AG, Jassal, M, Agrawal, AK, “Study of Hydrophobic Finishing of Cellulosic Substrate Using He/1, 3-Butadiene Plasma at Atmospheric Pressure.” Surf. Coat. Technol., 213 65–76 (2012)CrossRef Samanta, KK, Joshi, AG, Jassal, M, Agrawal, AK, “Study of Hydrophobic Finishing of Cellulosic Substrate Using He/1, 3-Butadiene Plasma at Atmospheric Pressure.” Surf. Coat. Technol., 213 65–76 (2012)CrossRef
166.
Zurück zum Zitat Zhang, J, France, P, Radomyselskiy, A, Datta, S, Zhao, J, van Ooij, W, “Hydrophobic Cotton Fabric Coated by a Thin Nanoparticulate Plasma Film.” J. Appl. Polym. Sci., 88 (6) 1473–1481 (2003)CrossRef Zhang, J, France, P, Radomyselskiy, A, Datta, S, Zhao, J, van Ooij, W, “Hydrophobic Cotton Fabric Coated by a Thin Nanoparticulate Plasma Film.” J. Appl. Polym. Sci., 88 (6) 1473–1481 (2003)CrossRef
167.
Zurück zum Zitat Thomas, B, Raj, MC, Joy, J, Moores, A, Drisko, GL, Sanchez, CM, “Nanocellulose, A Versatile Green Platform: From Biosources to Materials and Their Applications.” Chem. Rev., 118 (24) 11575–11625 (2018)CrossRef Thomas, B, Raj, MC, Joy, J, Moores, A, Drisko, GL, Sanchez, CM, “Nanocellulose, A Versatile Green Platform: From Biosources to Materials and Their Applications.” Chem. Rev., 118 (24) 11575–11625 (2018)CrossRef
168.
Zurück zum Zitat Rusu, DE, Stratulat, L, Ioanid, GE, Vlad, A, “Cold High-Frequency Plasma Versus Afterglow Plasma in the Preservation of Mobile Cultural Heritage on Paper Substrate.” IEEE Trans. Plasma Sci., 48 (2) 410–413 (2020)CrossRef Rusu, DE, Stratulat, L, Ioanid, GE, Vlad, A, “Cold High-Frequency Plasma Versus Afterglow Plasma in the Preservation of Mobile Cultural Heritage on Paper Substrate.” IEEE Trans. Plasma Sci., 48 (2) 410–413 (2020)CrossRef
169.
Zurück zum Zitat Balu, B, Breedveld, V, Hess, DW, “Fabrication of ‘Roll-Off’ and ‘Sticky’ Superhydrophobic Cellulose Surfaces via Plasma Processing.” Langmuir, 24 (9) 4785–4790 (2008)CrossRef Balu, B, Breedveld, V, Hess, DW, “Fabrication of ‘Roll-Off’ and ‘Sticky’ Superhydrophobic Cellulose Surfaces via Plasma Processing.” Langmuir, 24 (9) 4785–4790 (2008)CrossRef
170.
Zurück zum Zitat Thorvaldsson, A, Edvinsson, P, Glantz, A, Rodriguez, K, Walkenström, P, Gatenholm, P, “Superhydrophobic Behaviour of Plasma Modified Electrospun Cellulose Nanofiber-Coated Microfibers.” Cellulose, 19 (5) 1743–1748 (2012)CrossRef Thorvaldsson, A, Edvinsson, P, Glantz, A, Rodriguez, K, Walkenström, P, Gatenholm, P, “Superhydrophobic Behaviour of Plasma Modified Electrospun Cellulose Nanofiber-Coated Microfibers.” Cellulose, 19 (5) 1743–1748 (2012)CrossRef
171.
Zurück zum Zitat Ellinas, K, Tserepi, A, Gogolides, E, “Superhydrophobic Fabrics with Mechanical Durability Prepared by a Two-Step Plasma Processing Method.” Coatings, 8 (10) 351 (2018)CrossRef Ellinas, K, Tserepi, A, Gogolides, E, “Superhydrophobic Fabrics with Mechanical Durability Prepared by a Two-Step Plasma Processing Method.” Coatings, 8 (10) 351 (2018)CrossRef
172.
Zurück zum Zitat Ji, Y-Y, Hong, Y-C, Lee, S-H, Kim, S-D, Kim, S-S, “Formation of Super-Hydrophobic and Water-Repellency Surface with Hexamethyldisiloxane (HMDSO) Coating on Polyethyleneteraphtalate Fiber by Atmosperic Pressure Plasma Polymerization.” Surf. Coat. Technol., 202 (22–23) 5663–5667 (2008)CrossRef Ji, Y-Y, Hong, Y-C, Lee, S-H, Kim, S-D, Kim, S-S, “Formation of Super-Hydrophobic and Water-Repellency Surface with Hexamethyldisiloxane (HMDSO) Coating on Polyethyleneteraphtalate Fiber by Atmosperic Pressure Plasma Polymerization.” Surf. Coat. Technol., 202 (22–23) 5663–5667 (2008)CrossRef
173.
Zurück zum Zitat Favia, P, d’Agostino, R, Fracassi, F, “Plasma and Surface Diagnostics in PECVD (Plasma-Enhanced Chemical Vapor Deposition) from Silicon Containing Organic Monomers.” Pure Appl. Chem., 66 (6) 1373–1380 (1994)CrossRef Favia, P, d’Agostino, R, Fracassi, F, “Plasma and Surface Diagnostics in PECVD (Plasma-Enhanced Chemical Vapor Deposition) from Silicon Containing Organic Monomers.” Pure Appl. Chem., 66 (6) 1373–1380 (1994)CrossRef
174.
Zurück zum Zitat Nogueira, S, da Silva, M, Tan, I, Furlan, R, “Production of Highly Hydrophobic Films Using Low Frequency and High Density Plasma.” Revista Brasileira de Aplicações de Vácuo, 25 (1) 45–53 (2008) Nogueira, S, da Silva, M, Tan, I, Furlan, R, “Production of Highly Hydrophobic Films Using Low Frequency and High Density Plasma.” Revista Brasileira de Aplicações de Vácuo, 25 (1) 45–53 (2008)
175.
Zurück zum Zitat Palumbo, F, Di Mundo, R, Cappelluti, D, d’Agostino, R, “Superhydrophobic and Superhydrophilic Polycarbonate by Tailoring Chemistry and Nano-Texture with Plasma Processing.” Plasma Process. Polym., 8 (2) 118–126 (2011)CrossRef Palumbo, F, Di Mundo, R, Cappelluti, D, d’Agostino, R, “Superhydrophobic and Superhydrophilic Polycarbonate by Tailoring Chemistry and Nano-Texture with Plasma Processing.” Plasma Process. Polym., 8 (2) 118–126 (2011)CrossRef
176.
Zurück zum Zitat Shirtcliffe, N, Thiemann, P, Stratmann, M, Grundmeier, G, “Chemical Structure and Morphology of Thin, Organo-Silicon Plasma-Polymer Films as a Function of Process Parameters.” Surf. Coat. Technol., 142 1121–1128 (2001)CrossRef Shirtcliffe, N, Thiemann, P, Stratmann, M, Grundmeier, G, “Chemical Structure and Morphology of Thin, Organo-Silicon Plasma-Polymer Films as a Function of Process Parameters.” Surf. Coat. Technol., 142 1121–1128 (2001)CrossRef
177.
Zurück zum Zitat Pulpytel, J, Kumar, V, Peng, P, Micheli, V, Laidani, N, Arefi-Khonsari, F, “Deposition of Organosilicon Coatings by a Non-Equilibrium Atmospheric Pressure Plasma Jet: Design, Analysis and Macroscopic Scaling Law of the Process.” Plasma Process. Polym., 8 (7) 664–675 (2011)CrossRef Pulpytel, J, Kumar, V, Peng, P, Micheli, V, Laidani, N, Arefi-Khonsari, F, “Deposition of Organosilicon Coatings by a Non-Equilibrium Atmospheric Pressure Plasma Jet: Design, Analysis and Macroscopic Scaling Law of the Process.” Plasma Process. Polym., 8 (7) 664–675 (2011)CrossRef
178.
Zurück zum Zitat Kakiuchi, H, Higashida, K, Shibata, T, Ohmi, H, Yamada, T, Yasutake, K, “High-Rate HMDSO-Based Coatings in Open Air Using Atmospheric-Pressure Plasma Jet.” J. Non-Cryst. Solids, 358 (17) 2462–2465 (2012)CrossRef Kakiuchi, H, Higashida, K, Shibata, T, Ohmi, H, Yamada, T, Yasutake, K, “High-Rate HMDSO-Based Coatings in Open Air Using Atmospheric-Pressure Plasma Jet.” J. Non-Cryst. Solids, 358 (17) 2462–2465 (2012)CrossRef
179.
Zurück zum Zitat Höcker, H, “Plasma Treatment of Textile Fibers.” Pure Appl. Chem., 74 (3) 423–427 (2002)CrossRef Höcker, H, “Plasma Treatment of Textile Fibers.” Pure Appl. Chem., 74 (3) 423–427 (2002)CrossRef
180.
Zurück zum Zitat Sarmadi, A, Ying, T, Denes, F, “HMDSO-Plasma Modification of Polypropylene Fabrics.” Eur. Polym. J., 31 (9) 847–857 (1995)CrossRef Sarmadi, A, Ying, T, Denes, F, “HMDSO-Plasma Modification of Polypropylene Fabrics.” Eur. Polym. J., 31 (9) 847–857 (1995)CrossRef
181.
Zurück zum Zitat Kilic, B, Cireli Aksit, A, Mutlu, M, “Surface Modification and Characterization of Cotton and Polyamide Fabrics by Plasma Polymerization of Hexamethyldisilane and Hexamethyldisiloxane.” Int. J. Cloth. Sci. Technol., 21 (2/3) 137–145 (2009)CrossRef Kilic, B, Cireli Aksit, A, Mutlu, M, “Surface Modification and Characterization of Cotton and Polyamide Fabrics by Plasma Polymerization of Hexamethyldisilane and Hexamethyldisiloxane.” Int. J. Cloth. Sci. Technol., 21 (2/3) 137–145 (2009)CrossRef
182.
Zurück zum Zitat Bertaux, E, Le Marec, E, Crespy, D, Rossi, R, Hegemann, D, “Effects of Siloxane Plasma Coating on the Frictional Properties of Polyester and Polyamide Fabrics.” Surf. Coat. Technol., 204 (1–2) 165–171 (2009)CrossRef Bertaux, E, Le Marec, E, Crespy, D, Rossi, R, Hegemann, D, “Effects of Siloxane Plasma Coating on the Frictional Properties of Polyester and Polyamide Fabrics.” Surf. Coat. Technol., 204 (1–2) 165–171 (2009)CrossRef
183.
Zurück zum Zitat Cho, SC, Hong, YC, Cho, SG, Ji, YY, Han, CS, Uhm, HS, “Surface Modification of Polyimide Films, Filter Papers, and Cotton Clothes by HMDSO/Toluene Plasma at Low Pressure and Its Wettability.” Curr. Appl. Phys., 9 (6) 1223–1226 (2009)CrossRef Cho, SC, Hong, YC, Cho, SG, Ji, YY, Han, CS, Uhm, HS, “Surface Modification of Polyimide Films, Filter Papers, and Cotton Clothes by HMDSO/Toluene Plasma at Low Pressure and Its Wettability.” Curr. Appl. Phys., 9 (6) 1223–1226 (2009)CrossRef
184.
Zurück zum Zitat Palaskar, S, Kale, KH, Nadiger, G, Desai, A, “Dielectric Barrier Discharge Plasma Induced Surface Modification of Polyester/Cotton Blended Fabrics to Impart Water Repellency Using HMDSO.” J. Appl. Polym. Sci., 122 (2) 1092–1100 (2011)CrossRef Palaskar, S, Kale, KH, Nadiger, G, Desai, A, “Dielectric Barrier Discharge Plasma Induced Surface Modification of Polyester/Cotton Blended Fabrics to Impart Water Repellency Using HMDSO.” J. Appl. Polym. Sci., 122 (2) 1092–1100 (2011)CrossRef
185.
Zurück zum Zitat Shin, B, Lee, K-R, Moon, M-W, Kim, H-Y, “Extreme Water Repellency of Nanostructured Low-Surface-Energy Non-Woven Fabrics.” Soft Matter, 8 (6) 1817–1823 (2012)CrossRef Shin, B, Lee, K-R, Moon, M-W, Kim, H-Y, “Extreme Water Repellency of Nanostructured Low-Surface-Energy Non-Woven Fabrics.” Soft Matter, 8 (6) 1817–1823 (2012)CrossRef
186.
Zurück zum Zitat Twardowski, A, Makowski, P, Małachowski, A, Hrynyk, R, Pietrowski, P, Tyczkowski, J, “Plasma Treatment of Thermoactive Membrane Textiles for Superhydrophobicity.” Mater. Sci., 18 (2) 163–166 (2012) Twardowski, A, Makowski, P, Małachowski, A, Hrynyk, R, Pietrowski, P, Tyczkowski, J, “Plasma Treatment of Thermoactive Membrane Textiles for Superhydrophobicity.” Mater. Sci., 18 (2) 163–166 (2012)
187.
Zurück zum Zitat Ko, T-J, Her, EK, Shin, B, Kim, H-Y, Lee, K-R, Hong, BK, Kim, SH, Oh, KH, Moon, M-W, “Water Condensation Behavior on the Surface of a Network of Superhydrophobic Carbon Fibers with High-Aspect-Ratio Nanostructures.” Carbon, 50 (14) 5085–5092 (2012)CrossRef Ko, T-J, Her, EK, Shin, B, Kim, H-Y, Lee, K-R, Hong, BK, Kim, SH, Oh, KH, Moon, M-W, “Water Condensation Behavior on the Surface of a Network of Superhydrophobic Carbon Fibers with High-Aspect-Ratio Nanostructures.” Carbon, 50 (14) 5085–5092 (2012)CrossRef
188.
Zurück zum Zitat Yang, J, Pu, Y, Miao, D, Ning, X, “Fabrication of Durably Superhydrophobic Cotton Fabrics by Atmospheric Pressure Plasma Treatment with a Siloxane Precursor.” Polymers, 10 (4) 460 (2018)CrossRef Yang, J, Pu, Y, Miao, D, Ning, X, “Fabrication of Durably Superhydrophobic Cotton Fabrics by Atmospheric Pressure Plasma Treatment with a Siloxane Precursor.” Polymers, 10 (4) 460 (2018)CrossRef
189.
Zurück zum Zitat Bankovic, P, Demarquette, N, da Silva, M, “Obtention of Selective Membranes for Water and Hydrophobic Liquids by Plasma Enhanced Chemical Vapor Deposition on Porous Substrates.” Mater. Sci. Eng. B, 112 (2–3) 165–170 (2004)CrossRef Bankovic, P, Demarquette, N, da Silva, M, “Obtention of Selective Membranes for Water and Hydrophobic Liquids by Plasma Enhanced Chemical Vapor Deposition on Porous Substrates.” Mater. Sci. Eng. B, 112 (2–3) 165–170 (2004)CrossRef
190.
Zurück zum Zitat Marchand, DJ, Dilworth, ZR, Stauffer, RJ, Hsiao, E, Kim, J-H, Kang, J-G, Kim, SH, “Atmospheric rf Plasma Deposition of Superhydrophobic Coatings Using Tetramethylsilane Precursor.” Surf. Coat. Technol., 234 14–20 (2013)CrossRef Marchand, DJ, Dilworth, ZR, Stauffer, RJ, Hsiao, E, Kim, J-H, Kang, J-G, Kim, SH, “Atmospheric rf Plasma Deposition of Superhydrophobic Coatings Using Tetramethylsilane Precursor.” Surf. Coat. Technol., 234 14–20 (2013)CrossRef
191.
Zurück zum Zitat Kan, C-w, Kwong, C-h, Ng, S-p, Yuen, C-wM, “Treating of Rayon-Flocked Fabric by Atmospheric Pressure Plasma.” Mater. Sci., 22 (3) 426–428 (2016) Kan, C-w, Kwong, C-h, Ng, S-p, Yuen, C-wM, “Treating of Rayon-Flocked Fabric by Atmospheric Pressure Plasma.” Mater. Sci., 22 (3) 426–428 (2016)
192.
Zurück zum Zitat Yokota, T, Terai, T, Kobayashi, T, Meguro, T, Iwaki, M, “Cell Adhesion to Nitrogen-Doped DLCs Fabricated by Plasma-Based Ion Implantation and Deposition Method Using Toluene Gas.” Surf. Coat. Technol., 201 (19–20) 8048–8051 (2007)CrossRef Yokota, T, Terai, T, Kobayashi, T, Meguro, T, Iwaki, M, “Cell Adhesion to Nitrogen-Doped DLCs Fabricated by Plasma-Based Ion Implantation and Deposition Method Using Toluene Gas.” Surf. Coat. Technol., 201 (19–20) 8048–8051 (2007)CrossRef
193.
Zurück zum Zitat Larrieu, J, Clément, F, Held, B, Soulem, N, Luthon, F, Guimon, C, Martinez, H, “Analysis of Microscopic Modifications and Macroscopic Surface Properties of Polystyrene Thin Films Treated Under d.c. Pulsed Discharge Conditions.” Surf. Interface Anal. Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces Thin Films, 37 (6) 544–554 (2005) Larrieu, J, Clément, F, Held, B, Soulem, N, Luthon, F, Guimon, C, Martinez, H, “Analysis of Microscopic Modifications and Macroscopic Surface Properties of Polystyrene Thin Films Treated Under d.c. Pulsed Discharge Conditions.” Surf. Interface Anal. Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces Thin Films, 37 (6) 544–554 (2005)
194.
Zurück zum Zitat Caschera, D, Cortese, B, Mezzi, A, Brucale, M, Ingo, GM, Gigli, G, Padeletti, G, “Ultra Hydrophobic/Superhydrophilic Modified Cotton Textiles Through Functionalized Diamond-Like Carbon Coatings for Self-Cleaning Applications.” Langmuir, 29 (8) 2775–2783 (2013)CrossRef Caschera, D, Cortese, B, Mezzi, A, Brucale, M, Ingo, GM, Gigli, G, Padeletti, G, “Ultra Hydrophobic/Superhydrophilic Modified Cotton Textiles Through Functionalized Diamond-Like Carbon Coatings for Self-Cleaning Applications.” Langmuir, 29 (8) 2775–2783 (2013)CrossRef
195.
Zurück zum Zitat Brewer, SA, Willis, CR, “Structure and Oil Repellency: Textiles with Liquid Repellency to Hexane.” Appl. Surf. Sci., 254 (20) 6450–6454 (2008)CrossRef Brewer, SA, Willis, CR, “Structure and Oil Repellency: Textiles with Liquid Repellency to Hexane.” Appl. Surf. Sci., 254 (20) 6450–6454 (2008)CrossRef
196.
Zurück zum Zitat Xu, L, Deng, J, Guo, Y, Wang, W, Zhang, R, Yu, J, “Fabrication of Super-Hydrophobic Cotton Fabric by Low-Pressure Plasma-Enhanced Chemical Vapor Deposition.” Text. Res. J., 89 0040517518780000 (2018) Xu, L, Deng, J, Guo, Y, Wang, W, Zhang, R, Yu, J, “Fabrication of Super-Hydrophobic Cotton Fabric by Low-Pressure Plasma-Enhanced Chemical Vapor Deposition.” Text. Res. J., 89 0040517518780000 (2018)
197.
Zurück zum Zitat Airoudj, A, Bally-Le Gall, F, Roucoules, V, “Textile with Durable Janus Wetting Properties Produced by Plasma Polymerization.” J. Phys. Chem. C, 120 (51) 29162–29172 (2016)CrossRef Airoudj, A, Bally-Le Gall, F, Roucoules, V, “Textile with Durable Janus Wetting Properties Produced by Plasma Polymerization.” J. Phys. Chem. C, 120 (51) 29162–29172 (2016)CrossRef
198.
Zurück zum Zitat Kim, J-H, Liu, G, Kim, SH, “Deposition of Stable Hydrophobic Coatings with In-Line CH4 Atmospheric rf Plasma.” J. Mater. Chem., 16 (10) 977–981 (2006)CrossRef Kim, J-H, Liu, G, Kim, SH, “Deposition of Stable Hydrophobic Coatings with In-Line CH4 Atmospheric rf Plasma.” J. Mater. Chem., 16 (10) 977–981 (2006)CrossRef
Metadaten
Titel
A review of plasma-based superhydrophobic textiles: theoretical definitions, fabrication, and recent developments
verfasst von
Esmaeil Eslami
Reza Jafari
Gelareh Momen
Publikationsdatum
20.09.2021
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 6/2021
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-021-00523-8

Weitere Artikel der Ausgabe 6/2021

Journal of Coatings Technology and Research 6/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.