Skip to main content
Erschienen in: Journal of Materials Science 12/2018

06.02.2018 | Review

A review of the preparation and application of magnetic nanoparticles for surface-enhanced Raman scattering

verfasst von: Huasheng Lai, Fugang Xu, Li Wang

Erschienen in: Journal of Materials Science | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, the unique properties of magnetic functional nanomaterials have received considerable attentions and show promising applications in separation, detection, diagnosis, catalysis, environment remediation and so on. Specifically, introducing magnetic nanomaterials (MNPs) into traditional sensing techniques greatly simplifies detection operation and improves sensing performances, which makes magnetic nanomaterial-based sensing techniques become a hot research topic. Compared with other sensing techniques such as chromatography, fluorescence, mass spectrum and electrochemistry, surface-enhanced Raman scattering (SERS) displays unique properties of high-sensitivity, fingerprint specificity and nondestructive detection. The introduction of MNPs in SERS has proven to be an efficient way to resolve several critical challenges in practical SERS analysis leading to highly efficient target separation and enrichment, high-sensitive detection and precise outcomes analysis. This makes the MNPs involved SERS analysis a powerful technique with very appealing and promising application in various branches of analytical science. In this review, we first briefly introduced the preparation, encapsulation and surface modification of magnetic nanoparticles, assembly of magnetic nanoparticle–plasmonic substrates and then discussed their applications in SERS analysis, including biomedical application, environmental analysis, food safety and chemical reaction monitoring. Finally, we presented some outlooks on further developments of magnetic nanoparticles in SERS applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Talelli M, Aires A, Marciello M (2016) Protein-modified magnetic nanoparticles for biomedical applications. Curr Org Chem 19:1–1 Talelli M, Aires A, Marciello M (2016) Protein-modified magnetic nanoparticles for biomedical applications. Curr Org Chem 19:1–1
2.
Zurück zum Zitat Ma JQ, Guo SB, Guo XH, Ge HG (2015) A mild synthetic route to Fe3O4@TiO2-Au composites: preparation, characterization and photocatalytic activity. Appl Surf Sci 353:1117–1125CrossRef Ma JQ, Guo SB, Guo XH, Ge HG (2015) A mild synthetic route to Fe3O4@TiO2-Au composites: preparation, characterization and photocatalytic activity. Appl Surf Sci 353:1117–1125CrossRef
3.
Zurück zum Zitat Baghayeri M (2015) Glucose sensing by a glassy carbon electrode modified with glucose oxidase and a poly(p-phenylenediamine)-based nanocomposite. RSC Adv 5:18267–18274CrossRef Baghayeri M (2015) Glucose sensing by a glassy carbon electrode modified with glucose oxidase and a poly(p-phenylenediamine)-based nanocomposite. RSC Adv 5:18267–18274CrossRef
4.
Zurück zum Zitat Wang YX, Wang SH, Niu HY, Ma YR, Zeng T, Cai YQ, Meng ZF (2013) Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1283:20–26CrossRef Wang YX, Wang SH, Niu HY, Ma YR, Zeng T, Cai YQ, Meng ZF (2013) Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1283:20–26CrossRef
5.
Zurück zum Zitat Baikousi M, Bourlinos AB, Douvalis A et al (2012) Synthesis and characterization of γ-Fe2O3/carbon hybrids and their application in removal of hexavalent Chromium ions from aqueous solutions. Langmuir 28:3918–3930CrossRef Baikousi M, Bourlinos AB, Douvalis A et al (2012) Synthesis and characterization of γ-Fe2O3/carbon hybrids and their application in removal of hexavalent Chromium ions from aqueous solutions. Langmuir 28:3918–3930CrossRef
6.
Zurück zum Zitat Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715CrossRef Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715CrossRef
7.
Zurück zum Zitat Majetich SA, Jin Y (1999) Magnetization directions of individual nanoparticles. Science 284:470–473CrossRef Majetich SA, Jin Y (1999) Magnetization directions of individual nanoparticles. Science 284:470–473CrossRef
8.
Zurück zum Zitat Zou J, Zhang W, Poe D et al (2010) MRI manifestation of novel superparamagnetic iron oxide nanoparticles in the rat inner ear. Nanomedicine 5:739–754CrossRef Zou J, Zhang W, Poe D et al (2010) MRI manifestation of novel superparamagnetic iron oxide nanoparticles in the rat inner ear. Nanomedicine 5:739–754CrossRef
9.
Zurück zum Zitat Ranzoni A, Sabatte G, Ijzendoorn LJV, Prins MWJ (2012) One-step homogeneous magnetic nanoparticle immunoassay for biomarker detection directly in blood plasma. ACS Nano 6:3134–3141CrossRef Ranzoni A, Sabatte G, Ijzendoorn LJV, Prins MWJ (2012) One-step homogeneous magnetic nanoparticle immunoassay for biomarker detection directly in blood plasma. ACS Nano 6:3134–3141CrossRef
10.
Zurück zum Zitat Zhang LY, Wang TT, Yang L, Liu C, Wang CG, Liu HY, Wang YA, Su ZM (2012) General route to multifunctional uniform yolk/mesoporous silica shell nanocapsules: a platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Chem Eur J 18:12512–12521CrossRef Zhang LY, Wang TT, Yang L, Liu C, Wang CG, Liu HY, Wang YA, Su ZM (2012) General route to multifunctional uniform yolk/mesoporous silica shell nanocapsules: a platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Chem Eur J 18:12512–12521CrossRef
11.
Zurück zum Zitat Cheng H-W, Luo J, Zhong C-J (2015) SERS nanoprobes for bio-application. Front Chem Sci Eng 9:428–441CrossRef Cheng H-W, Luo J, Zhong C-J (2015) SERS nanoprobes for bio-application. Front Chem Sci Eng 9:428–441CrossRef
12.
Zurück zum Zitat Šefčovičová J, Tkac J (2015) Application of nanomaterials in microbial-cell biosensor constructions. Chem Pap 69:42–53 Šefčovičová J, Tkac J (2015) Application of nanomaterials in microbial-cell biosensor constructions. Chem Pap 69:42–53
13.
Zurück zum Zitat Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J (2017) Nanomaterial-based biosensors for detection of prostate specific antigen. Microchim Acta 6:1–19 Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J (2017) Nanomaterial-based biosensors for detection of prostate specific antigen. Microchim Acta 6:1–19
14.
Zurück zum Zitat Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144–157CrossRef Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144–157CrossRef
15.
Zurück zum Zitat Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRef Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRef
16.
Zurück zum Zitat Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 34:927–934CrossRef Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 34:927–934CrossRef
17.
Zurück zum Zitat Ramimoghadam D, Bagheri S, Hamid SBA (2014) Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J Magn Magn Mater 368:207–229CrossRef Ramimoghadam D, Bagheri S, Hamid SBA (2014) Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J Magn Magn Mater 368:207–229CrossRef
18.
Zurück zum Zitat Wang LP, Tang SK (2011) Progress of application of supercritical fluid technology in preparation of magnetic iron oxide nanoparticles. Chem Ind Eng P 30:339–344 Wang LP, Tang SK (2011) Progress of application of supercritical fluid technology in preparation of magnetic iron oxide nanoparticles. Chem Ind Eng P 30:339–344
19.
Zurück zum Zitat Wang H, Jiang X, Lee ST, He Y (2014) Silicon nanohybrid-based surface-enhanced Raman scattering sensors. Small 10:4455–4468CrossRef Wang H, Jiang X, Lee ST, He Y (2014) Silicon nanohybrid-based surface-enhanced Raman scattering sensors. Small 10:4455–4468CrossRef
20.
Zurück zum Zitat Tang SY, Li Y, Huang H et al (2017) Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants. ACS Appl Mater Interface 9:7472–7480CrossRef Tang SY, Li Y, Huang H et al (2017) Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants. ACS Appl Mater Interface 9:7472–7480CrossRef
23.
Zurück zum Zitat Bao ZJY, Liu X, Chen Y, Wu YC, Chan HLW, Dai JY, Lei DY (2014) Quantitative SERS detection of low-concentration aromatic polychlorinated biphenyl-77 and 2,4,6-trinitrotoluene. J Hazard Mater 280:706–712CrossRef Bao ZJY, Liu X, Chen Y, Wu YC, Chan HLW, Dai JY, Lei DY (2014) Quantitative SERS detection of low-concentration aromatic polychlorinated biphenyl-77 and 2,4,6-trinitrotoluene. J Hazard Mater 280:706–712CrossRef
24.
Zurück zum Zitat Aoki PHB, Furini LN, Alessio P, Aliaga AE, Constantino CJL (2013) Surface-enhanced Raman scattering (SERS) applied to cancer diagnosis and detection of pesticides, explosives, and drugs. Rev Anal Chem 32:55–76CrossRef Aoki PHB, Furini LN, Alessio P, Aliaga AE, Constantino CJL (2013) Surface-enhanced Raman scattering (SERS) applied to cancer diagnosis and detection of pesticides, explosives, and drugs. Rev Anal Chem 32:55–76CrossRef
25.
Zurück zum Zitat Benjaber S, Peveler WJ, Quesadacabrera R et al (2016) Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nat Commun 7:12189–12195CrossRef Benjaber S, Peveler WJ, Quesadacabrera R et al (2016) Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nat Commun 7:12189–12195CrossRef
26.
Zurück zum Zitat Han Y, Lei SL, Lu JH, He Y, Chen ZW, Ren L, Zhou X (2016) Potential use of SERS-assisted theranostic strategy based on Fe3O4/Au cluster/shell nanocomposites for bio-detection, MRI, and magnetic hyperthermia. Mater Sci Eng C Mater Biol Appl 64:199–207CrossRef Han Y, Lei SL, Lu JH, He Y, Chen ZW, Ren L, Zhou X (2016) Potential use of SERS-assisted theranostic strategy based on Fe3O4/Au cluster/shell nanocomposites for bio-detection, MRI, and magnetic hyperthermia. Mater Sci Eng C Mater Biol Appl 64:199–207CrossRef
27.
Zurück zum Zitat Ngo HT, Gandra N, Fales AM, Taylor SM, Vo-Dinh T (2016) Sensitive DNA detection and SNP discrimination using ultrabright SERS nanorattles and magnetic beads for malaria diagnostics. Biosens Bioelectron 81:8–14CrossRef Ngo HT, Gandra N, Fales AM, Taylor SM, Vo-Dinh T (2016) Sensitive DNA detection and SNP discrimination using ultrabright SERS nanorattles and magnetic beads for malaria diagnostics. Biosens Bioelectron 81:8–14CrossRef
28.
Zurück zum Zitat Chen P, Zhao AW, Wang J, He QY, Sun HH, Wang DP, Sun M, Guo HY (2018) In-situ monitoring reversible redox reaction and circulating detection of nitrite via an ultrasensitive magnetic Au@Ag SERS substrate. Sensor Actuat B-Chem 256:107–116CrossRef Chen P, Zhao AW, Wang J, He QY, Sun HH, Wang DP, Sun M, Guo HY (2018) In-situ monitoring reversible redox reaction and circulating detection of nitrite via an ultrasensitive magnetic Au@Ag SERS substrate. Sensor Actuat B-Chem 256:107–116CrossRef
29.
Zurück zum Zitat Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Edit 53:2–42CrossRef Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Edit 53:2–42CrossRef
30.
Zurück zum Zitat Hurst SJ, Fry HC, Gosztola DJ, Rajh T (2011) Utilizing chemical Raman enhancement: a route for metal oxide support-based biodetection. J Phys Chem C 115:620–630CrossRef Hurst SJ, Fry HC, Gosztola DJ, Rajh T (2011) Utilizing chemical Raman enhancement: a route for metal oxide support-based biodetection. J Phys Chem C 115:620–630CrossRef
31.
Zurück zum Zitat Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S (2017) Advances in magnetic nanoparticles for biomedical applications. Adv. Healthcare Mater. 1700845 Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S (2017) Advances in magnetic nanoparticles for biomedical applications. Adv. Healthcare Mater. 1700845
32.
Zurück zum Zitat Wu W, Wu ZH, Yu T, Jiang CZ, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501CrossRef Wu W, Wu ZH, Yu T, Jiang CZ, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501CrossRef
33.
Zurück zum Zitat Zhou Q, Li J, Wang M, Zhao D (2016) Iron-based magnetic nanomaterials and their environmental application. Crit Rev Sci Technol 46:783–826CrossRef Zhou Q, Li J, Wang M, Zhao D (2016) Iron-based magnetic nanomaterials and their environmental application. Crit Rev Sci Technol 46:783–826CrossRef
34.
Zurück zum Zitat Tran VT, Kim J, Tufa LT, Oh S, Kwon J, Lee J (2018) Magnetoplasmonic nanomaterials for biosensing/imaging and in vitro/in vivo biousability. Anal Chem 90:225–239CrossRef Tran VT, Kim J, Tufa LT, Oh S, Kwon J, Lee J (2018) Magnetoplasmonic nanomaterials for biosensing/imaging and in vitro/in vivo biousability. Anal Chem 90:225–239CrossRef
35.
Zurück zum Zitat Cristea C, Tertis M, Galatus R (2017) Magnetic nanoparticles for antibiotics detection. Nanomaterials 7(119):7060119 Cristea C, Tertis M, Galatus R (2017) Magnetic nanoparticles for antibiotics detection. Nanomaterials 7(119):7060119
36.
Zurück zum Zitat Xia H, Ruijie Tong R, Song Y, Xiong F, Li J, Wang S, Fu H, Wen J, Li D, Zeng Y, Zhao Z, Wu JJ (2017) Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles. Nanopart Res 19(4):149CrossRef Xia H, Ruijie Tong R, Song Y, Xiong F, Li J, Wang S, Fu H, Wen J, Li D, Zeng Y, Zhao Z, Wu JJ (2017) Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles. Nanopart Res 19(4):149CrossRef
37.
Zurück zum Zitat Wang T, Zhou Y, Lei C, Luo J, Xie S, Pu H (2017) Magnetic impedance biosensor: a review. Biosens Bioelectron 90:418–435CrossRef Wang T, Zhou Y, Lei C, Luo J, Xie S, Pu H (2017) Magnetic impedance biosensor: a review. Biosens Bioelectron 90:418–435CrossRef
38.
Zurück zum Zitat Liu Y, Zhou H, Hu Z, Yu G, Yang D, Zhao J (2017) Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review. Biosens Bioelectron 94:131–140CrossRef Liu Y, Zhou H, Hu Z, Yu G, Yang D, Zhao J (2017) Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review. Biosens Bioelectron 94:131–140CrossRef
39.
Zurück zum Zitat Farka Z, Juřík T, Kovář D, Trnková L, Skládal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenge. Chem Rev 117(15):9973–10042CrossRef Farka Z, Juřík T, Kovář D, Trnková L, Skládal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenge. Chem Rev 117(15):9973–10042CrossRef
40.
Zurück zum Zitat Xiao D, Lu T, Zeng R, Bi Y (2016) Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances. Microchim Acta 183(10):2655–2675CrossRef Xiao D, Lu T, Zeng R, Bi Y (2016) Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances. Microchim Acta 183(10):2655–2675CrossRef
41.
Zurück zum Zitat Sayed FN, Polshettiwar V (2015) Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides. Sci Rep 5:9733–9747CrossRef Sayed FN, Polshettiwar V (2015) Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides. Sci Rep 5:9733–9747CrossRef
42.
Zurück zum Zitat Mou XL, Wei XJ, Li Y, Shen WJ (2012) Tuning crystal-phase and shape of Fe2O3 nanoparticles for catalytic applications. CrystEngComm 14:5107–5120CrossRef Mou XL, Wei XJ, Li Y, Shen WJ (2012) Tuning crystal-phase and shape of Fe2O3 nanoparticles for catalytic applications. CrystEngComm 14:5107–5120CrossRef
43.
Zurück zum Zitat Kolen’ko YV, Bañobre-López M, Rodríguez-Abreu C et al (2014) Large-scale synthesis of colloidal Fe3O4 nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. J Phys Chem C 118:8691–8701CrossRef Kolen’ko YV, Bañobre-López M, Rodríguez-Abreu C et al (2014) Large-scale synthesis of colloidal Fe3O4 nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. J Phys Chem C 118:8691–8701CrossRef
44.
Zurück zum Zitat Lee J, Kwon SG, Park JG, Hyeon T (2015) Size dependence of metal-insulator transition in stoichiometric Fe3O4 nanocrystals. Nano Lett 15:4337–4342CrossRef Lee J, Kwon SG, Park JG, Hyeon T (2015) Size dependence of metal-insulator transition in stoichiometric Fe3O4 nanocrystals. Nano Lett 15:4337–4342CrossRef
45.
Zurück zum Zitat Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnana KM (2015) Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7:11142–11154CrossRef Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnana KM (2015) Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7:11142–11154CrossRef
46.
Zurück zum Zitat Park J, An K, Hwang Y et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRef Park J, An K, Hwang Y et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRef
47.
Zurück zum Zitat Marini S (2015) Magnetic nanocomposites for heavy metals removal from stormwater. PhD dessetation, Università degli Studi di padova Marini S (2015) Magnetic nanocomposites for heavy metals removal from stormwater. PhD dessetation, Università degli Studi di padova
48.
Zurück zum Zitat Gutiérrez L, Costo R, Grüttner C et al (2015) Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications. Dalton T 44:2943–2952CrossRef Gutiérrez L, Costo R, Grüttner C et al (2015) Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications. Dalton T 44:2943–2952CrossRef
49.
Zurück zum Zitat Wang LY, Sun Y, Wang J, Wang J, Yu AM, Zhang HQ, Song DQ (2011) Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles. Colloid Surf B 84:484–490CrossRef Wang LY, Sun Y, Wang J, Wang J, Yu AM, Zhang HQ, Song DQ (2011) Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles. Colloid Surf B 84:484–490CrossRef
50.
Zurück zum Zitat Stolnik S, Dunn SE, Garnett MC et al (1994) Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)- poly(ethylene glycol) copolymers. Pharm Res 11:1800–1808CrossRef Stolnik S, Dunn SE, Garnett MC et al (1994) Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)- poly(ethylene glycol) copolymers. Pharm Res 11:1800–1808CrossRef
51.
Zurück zum Zitat Cornell RM, Schertmann U (1997) The iron oxides: structure, properties, reactions, occurrence and uses. Corros Sci 39:1499–1500CrossRef Cornell RM, Schertmann U (1997) The iron oxides: structure, properties, reactions, occurrence and uses. Corros Sci 39:1499–1500CrossRef
52.
Zurück zum Zitat Bazile D, Prud’homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M (1995) Stealth me. PEG-PLA nanoparticles avoid uptake by the mononuclear phagocyte system. J Pharm Sci 84:493–498CrossRef Bazile D, Prud’homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M (1995) Stealth me. PEG-PLA nanoparticles avoid uptake by the mononuclear phagocyte system. J Pharm Sci 84:493–498CrossRef
53.
Zurück zum Zitat Peracchia MT, Gref R, Minamitake Y, Domb A, Lotan N, Langer R (1997) PEG coated nanoparticles from amphiphilic diblock and multiblock copolymer: investigation of their encapsulation and release characteristics. J Control Release 46:223–231CrossRef Peracchia MT, Gref R, Minamitake Y, Domb A, Lotan N, Langer R (1997) PEG coated nanoparticles from amphiphilic diblock and multiblock copolymer: investigation of their encapsulation and release characteristics. J Control Release 46:223–231CrossRef
54.
Zurück zum Zitat Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymer. J Control Release 63:155–163CrossRef Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymer. J Control Release 63:155–163CrossRef
55.
Zurück zum Zitat Lamprecht A, Ubrich N, Perez MH, Lehr CM, Hoffman M, Maincent P (1999) Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification. Int J Pharm 184:97–105CrossRef Lamprecht A, Ubrich N, Perez MH, Lehr CM, Hoffman M, Maincent P (1999) Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification. Int J Pharm 184:97–105CrossRef
56.
Zurück zum Zitat Sah H (1999) Protein behavior at the water/methylene chloride interface. J Pharm Sci 88:1320–1325CrossRef Sah H (1999) Protein behavior at the water/methylene chloride interface. J Pharm Sci 88:1320–1325CrossRef
57.
Zurück zum Zitat Zengin A, Tamer U, Caykara T (2014) Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles. Anal Chim Acta 817:33–41CrossRef Zengin A, Tamer U, Caykara T (2014) Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles. Anal Chim Acta 817:33–41CrossRef
58.
Zurück zum Zitat Shan YF, Yang Y, Cao YQ, Huang ZR (2015) Facile solvothermal synthesis of Ag/Fe3O4 nanocomposites and their SERS applications in online monitoring of pesticide contaminated water. RSC Adv 5:102610–102618CrossRef Shan YF, Yang Y, Cao YQ, Huang ZR (2015) Facile solvothermal synthesis of Ag/Fe3O4 nanocomposites and their SERS applications in online monitoring of pesticide contaminated water. RSC Adv 5:102610–102618CrossRef
59.
Zurück zum Zitat Li JM, Ma WF, You LJ, Guo J, Hu J, Wang CC (2013) Highly sensitive detection of target ssDNA based on SERS liquid chip using suspended magnetic nanospheres as capturing substrates. Langmuir 29:6147–6155CrossRef Li JM, Ma WF, You LJ, Guo J, Hu J, Wang CC (2013) Highly sensitive detection of target ssDNA based on SERS liquid chip using suspended magnetic nanospheres as capturing substrates. Langmuir 29:6147–6155CrossRef
60.
Zurück zum Zitat Liu TM, Yu JS, Chang CA et al (2014) One-step shell polymerization of inorganic nanoparticles and their applications in SERS/nonlinear optical imaging, drug delivery, and catalysis. Sci Rep 4:5593–5603CrossRef Liu TM, Yu JS, Chang CA et al (2014) One-step shell polymerization of inorganic nanoparticles and their applications in SERS/nonlinear optical imaging, drug delivery, and catalysis. Sci Rep 4:5593–5603CrossRef
61.
Zurück zum Zitat Qiu YC, Deng D, Deng QW, Wu P, Zhang H, Cai CX (2015) Synthesis of magnetic Fe3O4-Au hybrids for sensitive SERS detection of cancer cells at low abundance. J Mater Chem B 3:4487–4495CrossRef Qiu YC, Deng D, Deng QW, Wu P, Zhang H, Cai CX (2015) Synthesis of magnetic Fe3O4-Au hybrids for sensitive SERS detection of cancer cells at low abundance. J Mater Chem B 3:4487–4495CrossRef
62.
Zurück zum Zitat Contreras-Cáceres R, Abalde-Cela S, Guardia-Girós P, Fernández-Barbero A, Pérez-Juste J, Alvarez-Puebla RA, Liz-Marzán LM (2011) Multifunctional microgel magnetic/optical traps for SERS ultradetection. Langmuir 27:4520–4525CrossRef Contreras-Cáceres R, Abalde-Cela S, Guardia-Girós P, Fernández-Barbero A, Pérez-Juste J, Alvarez-Puebla RA, Liz-Marzán LM (2011) Multifunctional microgel magnetic/optical traps for SERS ultradetection. Langmuir 27:4520–4525CrossRef
63.
Zurück zum Zitat Wang C, Wang Y, Jin Y, Xu T, Yuan L, Fang J (2015) Multifunctional nanocomposite with magnetism, thermosensitivity and surface enhanced Raman scattering effect. J Nanosci Nanotechnol 15:6784–6789CrossRef Wang C, Wang Y, Jin Y, Xu T, Yuan L, Fang J (2015) Multifunctional nanocomposite with magnetism, thermosensitivity and surface enhanced Raman scattering effect. J Nanosci Nanotechnol 15:6784–6789CrossRef
64.
Zurück zum Zitat Lou L, Yu K, Zhang ZL, Huang R, Zhu JZ, Wang YT, Zhu ZQ (2012) Dual-mode protein detection based on Fe3O4-Au hybrid nanoparticles. Nano Res 5:272–282CrossRef Lou L, Yu K, Zhang ZL, Huang R, Zhu JZ, Wang YT, Zhu ZQ (2012) Dual-mode protein detection based on Fe3O4-Au hybrid nanoparticles. Nano Res 5:272–282CrossRef
65.
Zurück zum Zitat Cai WY, Wang X, Yan YX (2014) Controllable fabrication and sensitive detection based on SERS substrates with Au nanocubes coated Fe3O4. Mater Res Bull 52:1–5CrossRef Cai WY, Wang X, Yan YX (2014) Controllable fabrication and sensitive detection based on SERS substrates with Au nanocubes coated Fe3O4. Mater Res Bull 52:1–5CrossRef
66.
Zurück zum Zitat Wang CW, Xu JW, Wang JF, Rong Z, Li P, Xiao R, Wang SQ (2015) Polyethylenimine-interlayered silver-shell magnetic-core microspheres as multifunctional SERS substrates. J Mater Chem C 3:8684–8693CrossRef Wang CW, Xu JW, Wang JF, Rong Z, Li P, Xiao R, Wang SQ (2015) Polyethylenimine-interlayered silver-shell magnetic-core microspheres as multifunctional SERS substrates. J Mater Chem C 3:8684–8693CrossRef
67.
Zurück zum Zitat Yan MQ, Shen Y, Zhang GY, Bi H (2016) Multifunctional nanotube-like Fe3O4/PANI/CDs/Ag hybrids: an efficient SERS substrate and nanocatalyst. Mater Sci Eng, C 58:568–575CrossRef Yan MQ, Shen Y, Zhang GY, Bi H (2016) Multifunctional nanotube-like Fe3O4/PANI/CDs/Ag hybrids: an efficient SERS substrate and nanocatalyst. Mater Sci Eng, C 58:568–575CrossRef
68.
Zurück zum Zitat Ren GH, Shang MY, Zou HZ, Wang WQ (2016) Fe3O4@SiO2-SO3H@PPy@Au spheres: fabrication, characterization and application in SERS. Mater Chem Phys 173:333–339CrossRef Ren GH, Shang MY, Zou HZ, Wang WQ (2016) Fe3O4@SiO2-SO3H@PPy@Au spheres: fabrication, characterization and application in SERS. Mater Chem Phys 173:333–339CrossRef
69.
Zurück zum Zitat Zhai YM, Zhai JF, Wang YL, Guo SJ, Ren W, Dong SJ (2009) Fabrication of iron oxide core/gold shell submicrometer spheres with nanoscale surface roughness for efficient surface-enhanced Raman scattering. J Phys Chem C 113:7009–7014CrossRef Zhai YM, Zhai JF, Wang YL, Guo SJ, Ren W, Dong SJ (2009) Fabrication of iron oxide core/gold shell submicrometer spheres with nanoscale surface roughness for efficient surface-enhanced Raman scattering. J Phys Chem C 113:7009–7014CrossRef
70.
Zurück zum Zitat Li CY, Ma C, Wang F, Xi ZJ, Wang ZF, Deng Y, He NY (2012) Preparation and biomedical applications of core-shell silica/magnetic nanoparticle composites. J Nanosci Nanotechnol 12:2964–2972CrossRef Li CY, Ma C, Wang F, Xi ZJ, Wang ZF, Deng Y, He NY (2012) Preparation and biomedical applications of core-shell silica/magnetic nanoparticle composites. J Nanosci Nanotechnol 12:2964–2972CrossRef
71.
Zurück zum Zitat He R, Cheng YC, Jin T, Jiang M, Chen C, Xu GJ (2014) Plasmonic core/satellite heterostructure with hierarchical nanogaps for Raman spectroscopy enhanced by shell-isolated nanoparticles. Adv Optical Mater 2:788–793CrossRef He R, Cheng YC, Jin T, Jiang M, Chen C, Xu GJ (2014) Plasmonic core/satellite heterostructure with hierarchical nanogaps for Raman spectroscopy enhanced by shell-isolated nanoparticles. Adv Optical Mater 2:788–793CrossRef
72.
Zurück zum Zitat Gan Z, Zhao A, Zhang M, Tao W, Guo H, Gao Q, Mao R, Liu E (2013) Controlled synthesis of Au-loaded Fe3O4@C composite microspheres with superior SERS detection and catalytic degradation abilities for organic dyes. Dalton T 42:8597–8605CrossRef Gan Z, Zhao A, Zhang M, Tao W, Guo H, Gao Q, Mao R, Liu E (2013) Controlled synthesis of Au-loaded Fe3O4@C composite microspheres with superior SERS detection and catalytic degradation abilities for organic dyes. Dalton T 42:8597–8605CrossRef
73.
Zurück zum Zitat Ye Y, Chen J, Ding Q, Lin D, Dong R, Yang L, Liu J (2013) Sea-urchin-like Fe3O4@C@Ag particles: an efficient SERS substrate for detection of organic pollutants. Nanoscale 5:5887–5895CrossRef Ye Y, Chen J, Ding Q, Lin D, Dong R, Yang L, Liu J (2013) Sea-urchin-like Fe3O4@C@Ag particles: an efficient SERS substrate for detection of organic pollutants. Nanoscale 5:5887–5895CrossRef
74.
Zurück zum Zitat Prucek R, Tuček J, Kilianová M et al (2011) The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32:4704–4713CrossRef Prucek R, Tuček J, Kilianová M et al (2011) The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32:4704–4713CrossRef
75.
Zurück zum Zitat Salihov SV, Ivanenkov YA, Krechetov SP et al (2015) Recent advances in the synthesis of Fe3O4@Au core/shell nanoparticles. J Magn Magn Mater 394:173–178CrossRef Salihov SV, Ivanenkov YA, Krechetov SP et al (2015) Recent advances in the synthesis of Fe3O4@Au core/shell nanoparticles. J Magn Magn Mater 394:173–178CrossRef
76.
Zurück zum Zitat Alula MT, Yang J (2014) Photochemical decoration of magnetic composites with silver nanostructures for determination of creatinine in urine by surface-enhanced Raman spectroscopy. Talanta 130:55–62CrossRef Alula MT, Yang J (2014) Photochemical decoration of magnetic composites with silver nanostructures for determination of creatinine in urine by surface-enhanced Raman spectroscopy. Talanta 130:55–62CrossRef
77.
Zurück zum Zitat Shen JH, Zhou Y, Huang JF et al (2017) In-situ SERS monitoring of reaction catalyzed by multifunctional Fe3O4@TiO2@Ag–Au microspheres. Appl Catal B-Environ 205:11–18CrossRef Shen JH, Zhou Y, Huang JF et al (2017) In-situ SERS monitoring of reaction catalyzed by multifunctional Fe3O4@TiO2@Ag–Au microspheres. Appl Catal B-Environ 205:11–18CrossRef
78.
Zurück zum Zitat Hui C, Shen CM, Tian JF et al (2011) Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 3:701–705CrossRef Hui C, Shen CM, Tian JF et al (2011) Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 3:701–705CrossRef
80.
Zurück zum Zitat Guo B, Yim H, Khasanov A, Stevens J (2010) Formation of magnetic FexOy/silica core-shell particles in a one-step flame aerosol process. Aerosol Sci Tech 44:281–291CrossRef Guo B, Yim H, Khasanov A, Stevens J (2010) Formation of magnetic FexOy/silica core-shell particles in a one-step flame aerosol process. Aerosol Sci Tech 44:281–291CrossRef
81.
Zurück zum Zitat Morel AL, Nikitenko SI, Gionnet K et al (2008) Sonochemical approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties. ACS Nano 2:847–856CrossRef Morel AL, Nikitenko SI, Gionnet K et al (2008) Sonochemical approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties. ACS Nano 2:847–856CrossRef
82.
Zurück zum Zitat Du JJ, Xu JW, Sun ZL, Jing CY (2016) Au nanoparticles grafted on Fe3O4 as effective SERS substrates for label-free detection of the 16 EPA priority polycyclic aromatic hydrocarbons. Anal Chim Acta 915:81–89CrossRef Du JJ, Xu JW, Sun ZL, Jing CY (2016) Au nanoparticles grafted on Fe3O4 as effective SERS substrates for label-free detection of the 16 EPA priority polycyclic aromatic hydrocarbons. Anal Chim Acta 915:81–89CrossRef
83.
Zurück zum Zitat Choi J-Y, Kim K, Shin KS (2010) Surface-enhanced Raman scattering inducible by recyclable Ag-coated magnetic particles. Vib Spectrosc 53:117–120CrossRef Choi J-Y, Kim K, Shin KS (2010) Surface-enhanced Raman scattering inducible by recyclable Ag-coated magnetic particles. Vib Spectrosc 53:117–120CrossRef
84.
Zurück zum Zitat Du QJ, Tan LF, Li B, Liu TL, Ren J, Huang ZB, Tang FQ, Meng XW (2014) One-pot gradient solvothermal synthesis of the Ag/Au–Fe3O4 composite nanoparticles and their applications. RSC Adv 4:56057–56062CrossRef Du QJ, Tan LF, Li B, Liu TL, Ren J, Huang ZB, Tang FQ, Meng XW (2014) One-pot gradient solvothermal synthesis of the Ag/Au–Fe3O4 composite nanoparticles and their applications. RSC Adv 4:56057–56062CrossRef
85.
Zurück zum Zitat Gao Q, Zhao AW, Gan ZB et al (2012) Facile fabrication and growth mechanism of 3D flower-like Fe3O4 nanostructures and their application as SERS substrates. CrystEngComm 14:4834–4842CrossRef Gao Q, Zhao AW, Gan ZB et al (2012) Facile fabrication and growth mechanism of 3D flower-like Fe3O4 nanostructures and their application as SERS substrates. CrystEngComm 14:4834–4842CrossRef
86.
Zurück zum Zitat Yang LB, Bao ZY, Wu YC, Liu JH (2012) Clean and reproducible SERS substrates for high sensitive detection by solid phase synthesis and fabrication of Ag-coated Fe3O4 microspheres. J Raman Spectrosc 43:848–856CrossRef Yang LB, Bao ZY, Wu YC, Liu JH (2012) Clean and reproducible SERS substrates for high sensitive detection by solid phase synthesis and fabrication of Ag-coated Fe3O4 microspheres. J Raman Spectrosc 43:848–856CrossRef
87.
Zurück zum Zitat Quaresma P, Osório I, Dória G et al (2013) Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection. RSC Adv 4:3659–3667 Quaresma P, Osório I, Dória G et al (2013) Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection. RSC Adv 4:3659–3667
88.
Zurück zum Zitat Reguera J, Aberasturi DJ, Winckelmans N, Langer J, Balsd S, Liz-Marzán LM (2016) Synthesis of Janus plasmonic-magnetic, star-sphere nanoparticles, and their application in SERS detection. Faraday Discuss 191:47–59CrossRef Reguera J, Aberasturi DJ, Winckelmans N, Langer J, Balsd S, Liz-Marzán LM (2016) Synthesis of Janus plasmonic-magnetic, star-sphere nanoparticles, and their application in SERS detection. Faraday Discuss 191:47–59CrossRef
89.
Zurück zum Zitat Wang CW, Li P, Wang JF, Rong Z, Pang YF, Xu JW, Xiao R, Wang SQ (2015) Polyethylenimine-interlayered core-shell-satellite 3D magnetic microspheres as versatile SERS substrate. Nanoscale 7:18694–18707CrossRef Wang CW, Li P, Wang JF, Rong Z, Pang YF, Xu JW, Xiao R, Wang SQ (2015) Polyethylenimine-interlayered core-shell-satellite 3D magnetic microspheres as versatile SERS substrate. Nanoscale 7:18694–18707CrossRef
90.
Zurück zum Zitat Tian Y, Chen LJ, Zhang J, Ma ZF, Song CN (2012) Bifunctional Au-nanorod@Fe3O4 nanocomposites: synthesis, characterization, and their use as bioprobes. J Nanopart Res 14:998–1009CrossRef Tian Y, Chen LJ, Zhang J, Ma ZF, Song CN (2012) Bifunctional Au-nanorod@Fe3O4 nanocomposites: synthesis, characterization, and their use as bioprobes. J Nanopart Res 14:998–1009CrossRef
91.
Zurück zum Zitat Yuen C, Liu Q (2012) Magnetic field enriched surface enhanced resonance Raman spectroscopy for early malaria diagnosis. J Biomed Opt 17:017005–017013CrossRef Yuen C, Liu Q (2012) Magnetic field enriched surface enhanced resonance Raman spectroscopy for early malaria diagnosis. J Biomed Opt 17:017005–017013CrossRef
92.
Zurück zum Zitat Jun BH, Noh MS, Kim J et al (2010) Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small 6:119–125CrossRef Jun BH, Noh MS, Kim J et al (2010) Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small 6:119–125CrossRef
93.
Zurück zum Zitat Chen Y, Chen H, Shi J (2013) In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 25:3144–3176CrossRef Chen Y, Chen H, Shi J (2013) In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 25:3144–3176CrossRef
94.
Zurück zum Zitat Fan CZ, Zhu SM, Xin HY, Tian YC, Liang EJ (2017) Tunable and enhanced SERS activity of magneto-plasmonic Ag-Fe3O4 nanocomposites with one pot synthesize method. J Opt 19:015401–015408CrossRef Fan CZ, Zhu SM, Xin HY, Tian YC, Liang EJ (2017) Tunable and enhanced SERS activity of magneto-plasmonic Ag-Fe3O4 nanocomposites with one pot synthesize method. J Opt 19:015401–015408CrossRef
95.
Zurück zum Zitat Pang YF, Wang CW, Wang J, Sun ZW, Xiao R, Wang SQ (2016) Fe3O4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Biosens Bioelectron 79:574–580CrossRef Pang YF, Wang CW, Wang J, Sun ZW, Xiao R, Wang SQ (2016) Fe3O4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Biosens Bioelectron 79:574–580CrossRef
96.
Zurück zum Zitat Wu L, Xiao XY, Chen K et al (2017) Ultrasensitive SERS detection of Bacillus thuringiensis special gene based on Au@Ag NRs and magnetic beads. Biosens Bioelectron 92:321–327CrossRef Wu L, Xiao XY, Chen K et al (2017) Ultrasensitive SERS detection of Bacillus thuringiensis special gene based on Au@Ag NRs and magnetic beads. Biosens Bioelectron 92:321–327CrossRef
97.
Zurück zum Zitat Chen QS, Yang MX, Yang XJ, Li HH, Guo ZM, Rahma MH (2018) A large Raman scattering cross-section molecular embedded SERS aptasensor for ultrasensitive Aflatoxin B1 detection using CS-Fe3O4 for signal enrichment. Spectrochim Acta A 189:147–153CrossRef Chen QS, Yang MX, Yang XJ, Li HH, Guo ZM, Rahma MH (2018) A large Raman scattering cross-section molecular embedded SERS aptasensor for ultrasensitive Aflatoxin B1 detection using CS-Fe3O4 for signal enrichment. Spectrochim Acta A 189:147–153CrossRef
98.
Zurück zum Zitat Zhou X, Xu WL, Wang Y, Kuang Q, Shi YF, Zhong LB, Zhang QQ (2010) Fabrication of cluster/shell Fe3O4/Au nanoparticles and application in protein detection via a SERS method. J Phys Chem C114:19607–19613 Zhou X, Xu WL, Wang Y, Kuang Q, Shi YF, Zhong LB, Zhang QQ (2010) Fabrication of cluster/shell Fe3O4/Au nanoparticles and application in protein detection via a SERS method. J Phys Chem C114:19607–19613
99.
Zurück zum Zitat Kong XM, Yu Q, Lv ZP, Du XZ (2013) Tandem assays of protein and glucose with functionalized core/shell particles based on magnetic separation and surface-enhanced Raman scattering. Small 9:3259–3264 Kong XM, Yu Q, Lv ZP, Du XZ (2013) Tandem assays of protein and glucose with functionalized core/shell particles based on magnetic separation and surface-enhanced Raman scattering. Small 9:3259–3264
100.
Zurück zum Zitat Balzerova A, Fargasova A, Markova Z, Ranc V, Zboril R (2014) Magnetically-assisted surface enhanced Raman spectroscopy (MASERS) for label-free determination of human immunoglobulin G(IgG) in blood using Fe3O4@Ag nanocomposite. Anal Chem 86:11107–11114CrossRef Balzerova A, Fargasova A, Markova Z, Ranc V, Zboril R (2014) Magnetically-assisted surface enhanced Raman spectroscopy (MASERS) for label-free determination of human immunoglobulin G(IgG) in blood using Fe3O4@Ag nanocomposite. Anal Chem 86:11107–11114CrossRef
101.
Zurück zum Zitat Yang K, Hu YJ, Dong N, Zhu GC, Zhu TF, Jiang NJ (2017) A novel SERS-based magnetic aptasensor for prostate specific antigen assay with high sensitivity. Biosens Bioelectron 94:286–291CrossRef Yang K, Hu YJ, Dong N, Zhu GC, Zhu TF, Jiang NJ (2017) A novel SERS-based magnetic aptasensor for prostate specific antigen assay with high sensitivity. Biosens Bioelectron 94:286–291CrossRef
102.
Zurück zum Zitat Chaloupková Z, Balzerová A, Bařinková J, Medříková Z, Šácha P, Beneš P, Ranc V, Konvalinka J, Zbořil R (2018) Label-free determination of prostate specific membrane antigen in human whole blood at nanomolar levels by magnetically assisted surface enhanced Raman spectroscopy. Anal Chim Acta 997:44–51CrossRef Chaloupková Z, Balzerová A, Bařinková J, Medříková Z, Šácha P, Beneš P, Ranc V, Konvalinka J, Zbořil R (2018) Label-free determination of prostate specific membrane antigen in human whole blood at nanomolar levels by magnetically assisted surface enhanced Raman spectroscopy. Anal Chim Acta 997:44–51CrossRef
103.
Zurück zum Zitat Kearns H, Goodacre R, Jamieson LE, Graham D, Faulds K (2017) SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Anal Chem 89:12666–12673CrossRef Kearns H, Goodacre R, Jamieson LE, Graham D, Faulds K (2017) SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Anal Chem 89:12666–12673CrossRef
104.
Zurück zum Zitat Zhang L, Xua JJ, Mi L, Gong H, Jiang SY, Yu QM (2012) Multifunctional magnetic–plasmonic nanoparticles for fast concentration and sensitive detection of bacteria using SERS. Biosens Bioelectron 31:130–136CrossRef Zhang L, Xua JJ, Mi L, Gong H, Jiang SY, Yu QM (2012) Multifunctional magnetic–plasmonic nanoparticles for fast concentration and sensitive detection of bacteria using SERS. Biosens Bioelectron 31:130–136CrossRef
105.
Zurück zum Zitat Zhang H, Ma X, Liu Y, Duan N, Wu SJ, Wang ZP, Xu BC (2015) Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 74:872–877CrossRef Zhang H, Ma X, Liu Y, Duan N, Wu SJ, Wang ZP, Xu BC (2015) Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 74:872–877CrossRef
106.
Zurück zum Zitat Wang CW, Wang JF, Li M, Qu XY, Zhang KH, Rong Z, Xiao R, Wang SQ (2016) A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. Analyst 141:6226–6238CrossRef Wang CW, Wang JF, Li M, Qu XY, Zhang KH, Rong Z, Xiao R, Wang SQ (2016) A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. Analyst 141:6226–6238CrossRef
107.
Zurück zum Zitat Rong Z, Wang CW, Wang JF, Wang DG, Xiao R, Wang SQ (2016) Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures. Biosens Bioelectron 84:15–21CrossRef Rong Z, Wang CW, Wang JF, Wang DG, Xiao R, Wang SQ (2016) Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures. Biosens Bioelectron 84:15–21CrossRef
108.
Zurück zum Zitat Lin Y, Xu GH, Wei FD, Zhang AX, Yang J, Hu Q (2016) Detection of CEA in human serum using surface-enhanced Raman spectroscopy coupled with antibody-modified Au and γ-Fe2O3@Au nanoparticles. J Pharm Biomed 121:135–140CrossRef Lin Y, Xu GH, Wei FD, Zhang AX, Yang J, Hu Q (2016) Detection of CEA in human serum using surface-enhanced Raman spectroscopy coupled with antibody-modified Au and γ-Fe2O3@Au nanoparticles. J Pharm Biomed 121:135–140CrossRef
109.
Zurück zum Zitat Ge M, Wei C, Xu MM, Fang CW, Yuan YX, Gu RN, Yao JL (2015) Ultra-sensitive magnetic immunoassay of HE4 based on surface enhanced Raman spectroscopy. Anal Methods 7:6489–6495CrossRef Ge M, Wei C, Xu MM, Fang CW, Yuan YX, Gu RN, Yao JL (2015) Ultra-sensitive magnetic immunoassay of HE4 based on surface enhanced Raman spectroscopy. Anal Methods 7:6489–6495CrossRef
110.
Zurück zum Zitat Yang TX, Guo XY, Wu YP, Wang H, Fu SY, Wen Y, Yang HF (2014) Facile and label-free detection of lung cancer biomarker in urine by magnetically assisted surface-enhanced Raman scattering. ACS Appl Mater Interface 6:20985–20993CrossRef Yang TX, Guo XY, Wu YP, Wang H, Fu SY, Wen Y, Yang HF (2014) Facile and label-free detection of lung cancer biomarker in urine by magnetically assisted surface-enhanced Raman scattering. ACS Appl Mater Interface 6:20985–20993CrossRef
111.
Zurück zum Zitat Ouyang L, Zhu LH, Jiang JZ, Tang HQ (2014) A surface-enhanced Raman scattering method for detection of trace glutathione on the basis of immobilized silver nanoparticles and crystal violet probe. Anal Chim Acta 816:41–49CrossRef Ouyang L, Zhu LH, Jiang JZ, Tang HQ (2014) A surface-enhanced Raman scattering method for detection of trace glutathione on the basis of immobilized silver nanoparticles and crystal violet probe. Anal Chim Acta 816:41–49CrossRef
112.
Zurück zum Zitat Wang YL, Ravindranath S, Irudayaraj J (2011) Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal Bioanal Chem 399:1271–1278CrossRef Wang YL, Ravindranath S, Irudayaraj J (2011) Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal Bioanal Chem 399:1271–1278CrossRef
113.
Zurück zum Zitat Guven B, Basaran-Akgul N, Temur E, Ur Tamer, Boyac IH (2011) SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst 136:740–748CrossRef Guven B, Basaran-Akgul N, Temur E, Ur Tamer, Boyac IH (2011) SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst 136:740–748CrossRef
114.
Zurück zum Zitat Najafi R, Mukherjee S, Hudson J Jr, Sharma A, Banerjee P (2014) Development of a rapid capture-cum-detection method for Escherichia coli O157 from apple juice comprising nano-immunomagnetic separation in tandem with surface enhanced Raman scattering. Int J Food Microbiol 18:89–97CrossRef Najafi R, Mukherjee S, Hudson J Jr, Sharma A, Banerjee P (2014) Development of a rapid capture-cum-detection method for Escherichia coli O157 from apple juice comprising nano-immunomagnetic separation in tandem with surface enhanced Raman scattering. Int J Food Microbiol 18:89–97CrossRef
115.
Zurück zum Zitat Ashley J, Wu KY, Hansen MF, Schmidt MS, Boisen A, Sun Y (2017) Quantitative detection of trace level cloxacillin in food samples using magnetic molecularly imprinted polymer extraction and surface-enhanced Raman spectroscopy nanopillars. Anal Chem 89:11484–11490CrossRef Ashley J, Wu KY, Hansen MF, Schmidt MS, Boisen A, Sun Y (2017) Quantitative detection of trace level cloxacillin in food samples using magnetic molecularly imprinted polymer extraction and surface-enhanced Raman spectroscopy nanopillars. Anal Chem 89:11484–11490CrossRef
116.
Zurück zum Zitat Liu ZG, Wang Y, Deng R, Yang LY, Yu SH, Xu SP, Xu WQ (2016) Fe3O4@graphene oxide@Ag particles for surface magnet solid-phase extraction surface-enhanced Raman scattering (SMSPE-SERS): from sample pretreatment to detection all-in-one. ACS Appl Mater Interface 8:14160–14168CrossRef Liu ZG, Wang Y, Deng R, Yang LY, Yu SH, Xu SP, Xu WQ (2016) Fe3O4@graphene oxide@Ag particles for surface magnet solid-phase extraction surface-enhanced Raman scattering (SMSPE-SERS): from sample pretreatment to detection all-in-one. ACS Appl Mater Interface 8:14160–14168CrossRef
117.
Zurück zum Zitat Yang TX, Guo XY, Wang H, Fu SY, Yu J, Wen Y, Yang HF (2014) Au dotted magnetic network nanostructure and its application for on-site monitoring femtomolar level pesticide. Small 10:1325–1331CrossRef Yang TX, Guo XY, Wang H, Fu SY, Yu J, Wen Y, Yang HF (2014) Au dotted magnetic network nanostructure and its application for on-site monitoring femtomolar level pesticide. Small 10:1325–1331CrossRef
118.
Zurück zum Zitat Zhang XL, Niu CY, Wang YQ, Zhou SM, Liu J (2014) Gel-limited synthesis of dumbbell-like Fe3O4–Ag composite microspheres and their SERS applications. Nanoscale 6:12618–12625CrossRef Zhang XL, Niu CY, Wang YQ, Zhou SM, Liu J (2014) Gel-limited synthesis of dumbbell-like Fe3O4–Ag composite microspheres and their SERS applications. Nanoscale 6:12618–12625CrossRef
119.
Zurück zum Zitat Zheng HH, Zou BF, Chen L, Wang YQ, Zhang XL, Zhou SM (2015) Gel-assisted synthesis of oleate-modified Fe3O4@Ag composite microspheres as magnetic SERS probe for thiram detection. CrystEngComm 17:6393–6398CrossRef Zheng HH, Zou BF, Chen L, Wang YQ, Zhang XL, Zhou SM (2015) Gel-assisted synthesis of oleate-modified Fe3O4@Ag composite microspheres as magnetic SERS probe for thiram detection. CrystEngComm 17:6393–6398CrossRef
120.
Zurück zum Zitat Guo HY, Zhao AW, Wang RJ et al (2015) Generalized green synthesis of Fe3O4/Ag composites with excellent SERS activity and their application in fungicide detection. J Nanopart Res 17:1–10CrossRef Guo HY, Zhao AW, Wang RJ et al (2015) Generalized green synthesis of Fe3O4/Ag composites with excellent SERS activity and their application in fungicide detection. J Nanopart Res 17:1–10CrossRef
121.
Zurück zum Zitat Tang XH, Don RL, Yang LB, Liu JH (2015) Fabrication of Au nanorod-coated Fe3O4 microspheres as SERS substrate for pesticide analysis by near-infrared excitation. J Raman Spectrosc 46:470–475CrossRef Tang XH, Don RL, Yang LB, Liu JH (2015) Fabrication of Au nanorod-coated Fe3O4 microspheres as SERS substrate for pesticide analysis by near-infrared excitation. J Raman Spectrosc 46:470–475CrossRef
122.
Zurück zum Zitat Tang XH, Cai WY, Yang LB, Liu JH (2013) Highly uniform and optical visualization of SERS substrate for pesticide analysis based on Au nanoparticles grafted on dendritic α-Fe2O3. Nanoscale 5:11193–11199CrossRef Tang XH, Cai WY, Yang LB, Liu JH (2013) Highly uniform and optical visualization of SERS substrate for pesticide analysis based on Au nanoparticles grafted on dendritic α-Fe2O3. Nanoscale 5:11193–11199CrossRef
123.
Zurück zum Zitat Sun ZL, Du JJ, Yan L, Chen S, Yang ZL, Jing CY (2016) Multifunctional Fe3O4@SiO2-Au satellite structured SERS probe for charge selective detection of food dyes. ACS Appl Mater Interface 8:3056–3062CrossRef Sun ZL, Du JJ, Yan L, Chen S, Yang ZL, Jing CY (2016) Multifunctional Fe3O4@SiO2-Au satellite structured SERS probe for charge selective detection of food dyes. ACS Appl Mater Interface 8:3056–3062CrossRef
124.
Zurück zum Zitat Hu HB, Wang ZH, Pan L, Zhao SP, Zhu SY (2010) Ag-coated Fe3O4@SiO2 three-ply composite microspheres: synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering. J Phys Chem C 114:7738–7742CrossRef Hu HB, Wang ZH, Pan L, Zhao SP, Zhu SY (2010) Ag-coated Fe3O4@SiO2 three-ply composite microspheres: synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering. J Phys Chem C 114:7738–7742CrossRef
125.
Zurück zum Zitat Yu SH, Liu ZG, Wang WX, Jin L, Xu WQ, Wu YQ (2018) Disperse magnetic solid phase microextraction and surface enhanced Raman scattering (Dis-MSPME-SERS) for the rapid detection of trace illegally chemicals. Talanta 178:498–506CrossRef Yu SH, Liu ZG, Wang WX, Jin L, Xu WQ, Wu YQ (2018) Disperse magnetic solid phase microextraction and surface enhanced Raman scattering (Dis-MSPME-SERS) for the rapid detection of trace illegally chemicals. Talanta 178:498–506CrossRef
126.
Zurück zum Zitat Chen JH, Pang S, He LL, Nugen SR (2016) Highly sensitive and selective detection of nitrite ions using Fe3O4@SiO2/Au magnetic nanoparticles by surface-enhanced Raman spectroscopy. Biosens Bioelectron 85:726–733CrossRef Chen JH, Pang S, He LL, Nugen SR (2016) Highly sensitive and selective detection of nitrite ions using Fe3O4@SiO2/Au magnetic nanoparticles by surface-enhanced Raman spectroscopy. Biosens Bioelectron 85:726–733CrossRef
127.
Zurück zum Zitat Mezni A, Balti I, Mlayah A, Jouini N, Smiri LS (2013) Hybrid Au-Fe3O4 nanoparticles: plasmonic, surface enhanced raman scattering, and phase transition properties. J Phys Chem C 117:16166–16174CrossRef Mezni A, Balti I, Mlayah A, Jouini N, Smiri LS (2013) Hybrid Au-Fe3O4 nanoparticles: plasmonic, surface enhanced raman scattering, and phase transition properties. J Phys Chem C 117:16166–16174CrossRef
128.
Zurück zum Zitat Cai WY, Tang XH, Sun B, Yang LB (2014) Highly sensitive in situ monitoring of catalytic reactions by surface enhancement Raman spectroscopy on multifunctional Fe3O4/C/Au NPs. Nanoscale 6:7954–7958CrossRef Cai WY, Tang XH, Sun B, Yang LB (2014) Highly sensitive in situ monitoring of catalytic reactions by surface enhancement Raman spectroscopy on multifunctional Fe3O4/C/Au NPs. Nanoscale 6:7954–7958CrossRef
129.
Zurück zum Zitat Lv B, Sun ZL, Zhang JF, Jing CY (2017) Multifunctional satellite Fe3O4-Au@TiO2 nano-structure for SERS detection and photo-reduction of Cr(VI). Colloid Surf A 513:234–240CrossRef Lv B, Sun ZL, Zhang JF, Jing CY (2017) Multifunctional satellite Fe3O4-Au@TiO2 nano-structure for SERS detection and photo-reduction of Cr(VI). Colloid Surf A 513:234–240CrossRef
130.
Zurück zum Zitat Qin SH, Cai WY, Tang XH, Yang LB (2014) Sensitively monitoring photodegradation process of organic dye molecules by surface-enhanced Raman spectroscopy based on Fe3O4@SiO2@TiO2@Ag particle. Analyst 139:5509–5515CrossRef Qin SH, Cai WY, Tang XH, Yang LB (2014) Sensitively monitoring photodegradation process of organic dye molecules by surface-enhanced Raman spectroscopy based on Fe3O4@SiO2@TiO2@Ag particle. Analyst 139:5509–5515CrossRef
131.
Zurück zum Zitat Ding QQ, Zhou HJ, Zhang HM, Zhang YX, Wang GZ, Zhao HJ (2016) 3D Fe3O4@Au@Ag nanoflowers assembled magnetoplasmonic chains for in situ SERS monitoring of plasmon-assisted catalytic reactions. J Mater Chem A 4:8866–8874CrossRef Ding QQ, Zhou HJ, Zhang HM, Zhang YX, Wang GZ, Zhao HJ (2016) 3D Fe3O4@Au@Ag nanoflowers assembled magnetoplasmonic chains for in situ SERS monitoring of plasmon-assisted catalytic reactions. J Mater Chem A 4:8866–8874CrossRef
132.
Zurück zum Zitat Wu Y, Yang H, Zhu L, Xie AJ, Li SK, Song JM, Shen YH (2014) Multifunctional SERS substrates of Fe3O4@Ag2Se/Ag: construction, properties and application. Anal Methods 6:7083–7087CrossRef Wu Y, Yang H, Zhu L, Xie AJ, Li SK, Song JM, Shen YH (2014) Multifunctional SERS substrates of Fe3O4@Ag2Se/Ag: construction, properties and application. Anal Methods 6:7083–7087CrossRef
133.
Zurück zum Zitat Ye M, Wei ZW, Hu F et al (2015) Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering. Nanoscale 7:13427–13437CrossRef Ye M, Wei ZW, Hu F et al (2015) Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering. Nanoscale 7:13427–13437CrossRef
134.
Zurück zum Zitat Gao Q, Zhao AW, Gan ZB et al (2012) Facile fabrication and growth mechanism of 3D flower-like Fe3O4 nanostructrues and their application as SERS substrates. CrystEngComm 14:4834–4842CrossRef Gao Q, Zhao AW, Gan ZB et al (2012) Facile fabrication and growth mechanism of 3D flower-like Fe3O4 nanostructrues and their application as SERS substrates. CrystEngComm 14:4834–4842CrossRef
135.
Zurück zum Zitat Chen FH, Wang YW, Chen QT, Han LF, Chen ZJ, Fang SM (2014) Multifunctional nanocomposites of Fe3O4–graphene–Au for repeated use in simultaneous adsorption, in situ SERS detection and catalytic reduction of 4-nitrophenol in water. Mater Res Express 1:299–308 Chen FH, Wang YW, Chen QT, Han LF, Chen ZJ, Fang SM (2014) Multifunctional nanocomposites of Fe3O4–graphene–Au for repeated use in simultaneous adsorption, in situ SERS detection and catalytic reduction of 4-nitrophenol in water. Mater Res Express 1:299–308
136.
Zurück zum Zitat Ding GH, Xie S, Zhu YM, Liu Y, Wang L, Xu FG (2015) Graphene oxide wrapped Fe3O4@Au nanohybrid as SERS substrate for aromatic dye detection. Sensor Actuat B-Chem 221:1084–1093CrossRef Ding GH, Xie S, Zhu YM, Liu Y, Wang L, Xu FG (2015) Graphene oxide wrapped Fe3O4@Au nanohybrid as SERS substrate for aromatic dye detection. Sensor Actuat B-Chem 221:1084–1093CrossRef
137.
Zurück zum Zitat Zhang LL, Bao ZW, Yu XX et al (2016) Rational design of α–Fe2O3/reduced graphene oxide composites: rapid detection and effective removal of organic pollutants. ACS Appl Mater Interface 8:6431–6438CrossRef Zhang LL, Bao ZW, Yu XX et al (2016) Rational design of α–Fe2O3/reduced graphene oxide composites: rapid detection and effective removal of organic pollutants. ACS Appl Mater Interface 8:6431–6438CrossRef
138.
Zurück zum Zitat An Q, Zhang P, Li JM, Ma WF, Guo J, Hu J, Wang CC (2012) Silver-coated magnetite-carbon core–shell microspheres as substrate enhanced SERS probes for detection of trace persistent organic pollutants. Nanoscale 4:5210–5216CrossRef An Q, Zhang P, Li JM, Ma WF, Guo J, Hu J, Wang CC (2012) Silver-coated magnetite-carbon core–shell microspheres as substrate enhanced SERS probes for detection of trace persistent organic pollutants. Nanoscale 4:5210–5216CrossRef
139.
Zurück zum Zitat Song J, Chen ZP, Jin JW, Chen Y, Yu RQ (2014) Quantitative surface-enhanced Raman spectroscopy based on the combination of magnetic nanoparticles with an advanced chemometric model. Chemom Intell Lab 135:31–36CrossRef Song J, Chen ZP, Jin JW, Chen Y, Yu RQ (2014) Quantitative surface-enhanced Raman spectroscopy based on the combination of magnetic nanoparticles with an advanced chemometric model. Chemom Intell Lab 135:31–36CrossRef
140.
Zurück zum Zitat Song D, Yang R, Wang CW, Xiao R, Long F (2016) Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples. Sci Rep 6:22870–22879CrossRef Song D, Yang R, Wang CW, Xiao R, Long F (2016) Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples. Sci Rep 6:22870–22879CrossRef
141.
Zurück zum Zitat Niu CY, Zou BF, Wang YQ, Cheng L, Zheng HH, Zhou SM (2016) Highly sensitive and reproducible SERS performance from uniform film assembled by magnetic noble metal composite microspheres. Langmuir 32:858–863CrossRef Niu CY, Zou BF, Wang YQ, Cheng L, Zheng HH, Zhou SM (2016) Highly sensitive and reproducible SERS performance from uniform film assembled by magnetic noble metal composite microspheres. Langmuir 32:858–863CrossRef
142.
Zurück zum Zitat Sun ZL, Du JJ, Lv B, Jing CY (2016) Satellite Fe3O4@SiO2–Au SERS probe for trace Hg2+ detection. RSC Adv 6:73040–73044CrossRef Sun ZL, Du JJ, Lv B, Jing CY (2016) Satellite Fe3O4@SiO2–Au SERS probe for trace Hg2+ detection. RSC Adv 6:73040–73044CrossRef
143.
Zurück zum Zitat Du JJ, Jing CY (2011) Preparation of Fe3O4@Ag SERS substrate and its application in environmental Cr(VI) analysis. J Colloid Interface Sci 358:54–61CrossRef Du JJ, Jing CY (2011) Preparation of Fe3O4@Ag SERS substrate and its application in environmental Cr(VI) analysis. J Colloid Interface Sci 358:54–61CrossRef
144.
Zurück zum Zitat Du JJ, Cui JL, Jing CY (2014) Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor. Chem Commun 50:347–349CrossRef Du JJ, Cui JL, Jing CY (2014) Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor. Chem Commun 50:347–349CrossRef
145.
Zurück zum Zitat Gan ZB, Zhao AW, Zhang MF et al (2013) Fabrication and magnetic-induced aggregation of Fe3O4-noble metal composites for superior SERS performances. J Nanopart Res 15:15662–15666CrossRef Gan ZB, Zhao AW, Zhang MF et al (2013) Fabrication and magnetic-induced aggregation of Fe3O4-noble metal composites for superior SERS performances. J Nanopart Res 15:15662–15666CrossRef
146.
Zurück zum Zitat Esenturk EN, Walker ARH (2013) Gold nanostar @ iron oxide core-shell nanostructures: synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties. J Nanopart Res 15:1364–1374CrossRef Esenturk EN, Walker ARH (2013) Gold nanostar @ iron oxide core-shell nanostructures: synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties. J Nanopart Res 15:1364–1374CrossRef
147.
Zurück zum Zitat Wang ZJ, Wu LN, Wang FP, Jiang ZH, Shen BZ (2013) Durian-like multi-functional Fe3O4–Au nanoparticles: synthesis, characterization and selective detection of benzidine. J Mater Chem A 1:9746–9751CrossRef Wang ZJ, Wu LN, Wang FP, Jiang ZH, Shen BZ (2013) Durian-like multi-functional Fe3O4–Au nanoparticles: synthesis, characterization and selective detection of benzidine. J Mater Chem A 1:9746–9751CrossRef
148.
Zurück zum Zitat Zhu SM, Fan CZ, Wang JQ, He JN, Liang EJ, Chao MJ (2015) Realization of high sensitive SERS substrates with one-pot fabrication of Ag–Fe3O4 nanocomposites. J Colloid Interface Sci 438:116–121CrossRef Zhu SM, Fan CZ, Wang JQ, He JN, Liang EJ, Chao MJ (2015) Realization of high sensitive SERS substrates with one-pot fabrication of Ag–Fe3O4 nanocomposites. J Colloid Interface Sci 438:116–121CrossRef
149.
Zurück zum Zitat Liu B, Bai C, Zhao D et al (2016) Novel ferroferric oxide/polystyrene/silver core–shell magnetic nanocomposite microspheres as regenerable substrates for surface-enhanced Raman scattering. Appl Surf Sci 364:628–635CrossRef Liu B, Bai C, Zhao D et al (2016) Novel ferroferric oxide/polystyrene/silver core–shell magnetic nanocomposite microspheres as regenerable substrates for surface-enhanced Raman scattering. Appl Surf Sci 364:628–635CrossRef
150.
Zurück zum Zitat Shen M, Chen SQ, Jia WP, Fan GD, Jin YX, Liang HD (2016) Facile synthesis of Ag@Fe3O4@C–Au core-shell microspheres for surface-enhanced Raman scattering. Gold Bull 49:103–109CrossRef Shen M, Chen SQ, Jia WP, Fan GD, Jin YX, Liang HD (2016) Facile synthesis of Ag@Fe3O4@C–Au core-shell microspheres for surface-enhanced Raman scattering. Gold Bull 49:103–109CrossRef
151.
Zurück zum Zitat Caro C, Sayagues MJ, Franco V, Conde A, Zaderenko P, Gámez F (2016) A hybrid silver-magnetite detector based on surface enhanced Raman scattering for differentiating organic compounds. Sensor Actuat B-Chem 228:124–133CrossRef Caro C, Sayagues MJ, Franco V, Conde A, Zaderenko P, Gámez F (2016) A hybrid silver-magnetite detector based on surface enhanced Raman scattering for differentiating organic compounds. Sensor Actuat B-Chem 228:124–133CrossRef
152.
Zurück zum Zitat Du JJ, Jing CY (2011) Preparation of thiol modified Fe3O4@Ag magnetic SERS probe for PAHs detection and identification. J Phys Chem C 115:17829–17835CrossRef Du JJ, Jing CY (2011) Preparation of thiol modified Fe3O4@Ag magnetic SERS probe for PAHs detection and identification. J Phys Chem C 115:17829–17835CrossRef
153.
Zurück zum Zitat Hu YX, Sun YG (2012) Stable magnetic hot spots for simultaneous concentration and ultrasensitive surface-enhanced Raman scattering detection of solution analytes. J Phys Chem C 116:13329–13335CrossRef Hu YX, Sun YG (2012) Stable magnetic hot spots for simultaneous concentration and ultrasensitive surface-enhanced Raman scattering detection of solution analytes. J Phys Chem C 116:13329–13335CrossRef
154.
Zurück zum Zitat Shen JH, Zhu YH, Yang XL, Zong J, Li CZ (2013) Multifunctional Fe3O4@Ag/SiO2/Au core–shell microspheres as a novel SERS-activity label via long-range plasmon coupling. Langmuir 29:690–695CrossRef Shen JH, Zhu YH, Yang XL, Zong J, Li CZ (2013) Multifunctional Fe3O4@Ag/SiO2/Au core–shell microspheres as a novel SERS-activity label via long-range plasmon coupling. Langmuir 29:690–695CrossRef
155.
Zurück zum Zitat Liu HL, Yang LB, Liu JH (2016) Three-dimensional SERS hot spots for chemical sensing: towards developing a practical analyzer. Trac-Trend Anal Chem 80:364–372CrossRef Liu HL, Yang LB, Liu JH (2016) Three-dimensional SERS hot spots for chemical sensing: towards developing a practical analyzer. Trac-Trend Anal Chem 80:364–372CrossRef
Metadaten
Titel
A review of the preparation and application of magnetic nanoparticles for surface-enhanced Raman scattering
verfasst von
Huasheng Lai
Fugang Xu
Li Wang
Publikationsdatum
06.02.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2095-9

Weitere Artikel der Ausgabe 12/2018

Journal of Materials Science 12/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.