Skip to main content
Erschienen in: Journal of Nanoparticle Research 7/2022

01.07.2022 | Review

A review on structure, preparation and applications of silk fibroin-based nano-drug delivery systems

verfasst von: Praharsh Kumar Mandadhi Rajendra, Bala Sai Soujith Nidamanuri, Anjali Puthusserikkunnu Balan, Senthil Venkatachalam, Natarajan Jawahar

Erschienen in: Journal of Nanoparticle Research | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of highly effective systems for drug delivery is crucial in biomedical care. Protein-based carriers have gained more importance in drug delivery as they are more advantageous than conventional drug delivery systems. Silk fibroin is a naturally occurring protein derived from cocoons of Bombyx mori. It has high potential in biomedical fields for its excellent biocompatibility and biodegradability. Due to its unique properties, it is highly capable of loading and delivering various biomolecules, drugs and other moieties as therapeutics. Many emphases have been directed to develop SF-based nano-drug delivery for its strong binding capacity for a wide range of drugs, controlled drug release characteristics, and ease of fabrication. The recent developments on SF-based nanoparticles have been highlighted in this review, covering SF’s chemical structure, properties and preparation methods. Also, recent functions of SF for the fabrication of nano-drug delivery systems are discussed.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jahanshahi M, Babaei Z (2008) Protein nanoparticle: a unique system as drug delivery vehicles. Afr J Biotechnol 7(25):4926–4934  Jahanshahi M, Babaei Z (2008) Protein nanoparticle: a unique system as drug delivery vehicles. Afr J Biotechnol 7(25):4926–4934
2.
Zurück zum Zitat Tian Y, Jiang X, Chen X, Shao Z, Yang W (2014) Doxorubicin-loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug-resistant cancer. Adv Mater 26(43):7393–7398CrossRef Tian Y, Jiang X, Chen X, Shao Z, Yang W (2014) Doxorubicin-loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug-resistant cancer. Adv Mater 26(43):7393–7398CrossRef
3.
Zurück zum Zitat Tao H, Kaplan DL, Omenetto FG (2012) Silk materials - a road to sustainable high technology. Adv Mater 24(21):2824–2837CrossRef Tao H, Kaplan DL, Omenetto FG (2012) Silk materials - a road to sustainable high technology. Adv Mater 24(21):2824–2837CrossRef
4.
Zurück zum Zitat Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424(6952):1057–1061CrossRef Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424(6952):1057–1061CrossRef
5.
Zurück zum Zitat Yan HB, Zhang YQ, Ma YL, Zhou LX (2009) Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system. J Nanopart Res 11(8):1937–1946CrossRef Yan HB, Zhang YQ, Ma YL, Zhou LX (2009) Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system. J Nanopart Res 11(8):1937–1946CrossRef
6.
Zurück zum Zitat Cheema SK, Gobin AS, Rhea R, Lopez-Berestein G, Newman RA, Mathur AB (2007) Silk fibroin mediated delivery of liposomal emodin to breast cancer cells. Int J Pharm 341(1–2):221–229CrossRef Cheema SK, Gobin AS, Rhea R, Lopez-Berestein G, Newman RA, Mathur AB (2007) Silk fibroin mediated delivery of liposomal emodin to breast cancer cells. Int J Pharm 341(1–2):221–229CrossRef
7.
Zurück zum Zitat Mottaghitalab F, Farokhi M, Shokrgozar MA, Atyabi F, Hosseinkhani H (2015) Silk fibroin nanoparticle as a novel drug delivery system. J Control Release 206:161–176CrossRef Mottaghitalab F, Farokhi M, Shokrgozar MA, Atyabi F, Hosseinkhani H (2015) Silk fibroin nanoparticle as a novel drug delivery system. J Control Release 206:161–176CrossRef
8.
Zurück zum Zitat Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H et al (2018) Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 85:1–56CrossRef Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H et al (2018) Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 85:1–56CrossRef
9.
Zurück zum Zitat Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori Is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275(51):40517–40528CrossRef Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori Is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275(51):40517–40528CrossRef
10.
Zurück zum Zitat Numata K, Ifuku N, Masunaga H, Hikima T, Sakai T (2017) Silk Resin with hydrated dual chemical-physical cross-links achieves high strength and toughness. Biomacromol 18(6):1937–1946CrossRef Numata K, Ifuku N, Masunaga H, Hikima T, Sakai T (2017) Silk Resin with hydrated dual chemical-physical cross-links achieves high strength and toughness. Biomacromol 18(6):1937–1946CrossRef
11.
Zurück zum Zitat Nguyen AT, Huang Q-L, Yang Z, Lin N, Xu G, Liu XY (2015) Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance. Small 11(9–10):1039–1054CrossRef Nguyen AT, Huang Q-L, Yang Z, Lin N, Xu G, Liu XY (2015) Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance. Small 11(9–10):1039–1054CrossRef
12.
Zurück zum Zitat Liu R, Deng Q, Yang Z, Yang D, Han M-Y, Liu XY (2016) “Nano-fishnet” structure making silk fibers tougher. Adv Funct Mater 26(30):5534–5541CrossRef Liu R, Deng Q, Yang Z, Yang D, Han M-Y, Liu XY (2016) “Nano-fishnet” structure making silk fibers tougher. Adv Funct Mater 26(30):5534–5541CrossRef
13.
Zurück zum Zitat Asakura T, Okushita K, Williamson MP (2015) Analysis of the structure of Bombyx mori silk fibroin by NMR. Macromolecules 48(8):2345–2357CrossRef Asakura T, Okushita K, Williamson MP (2015) Analysis of the structure of Bombyx mori silk fibroin by NMR. Macromolecules 48(8):2345–2357CrossRef
14.
Zurück zum Zitat Valluzzi R, Gido SP, Muller W, Kaplan DL (1999) Orientation of silk III at the air-water interface. Int J Biol Macromol 24(2–3):237–242CrossRef Valluzzi R, Gido SP, Muller W, Kaplan DL (1999) Orientation of silk III at the air-water interface. Int J Biol Macromol 24(2–3):237–242CrossRef
15.
Zurück zum Zitat Shao Z, Vollrath F (2002) Surprising strength of silkworm silk. Nature 418(6899):741–741CrossRef Shao Z, Vollrath F (2002) Surprising strength of silkworm silk. Nature 418(6899):741–741CrossRef
16.
Zurück zum Zitat Koh L-D, Cheng Y, Teng C-P, Khin Y-W, Loh X-J, Tee S-Y et al (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46:86–110CrossRef Koh L-D, Cheng Y, Teng C-P, Khin Y-W, Loh X-J, Tee S-Y et al (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46:86–110CrossRef
17.
Zurück zum Zitat Römer L, Scheibel T (2008) The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 2(4):154–161CrossRef Römer L, Scheibel T (2008) The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 2(4):154–161CrossRef
18.
Zurück zum Zitat Keten S, Xu Z, Ihle B, Buehler MJ (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nature Mater 9(4):359–367CrossRef Keten S, Xu Z, Ihle B, Buehler MJ (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nature Mater 9(4):359–367CrossRef
19.
Zurück zum Zitat Nuanchai K, Wilaiwan S, Prasong S (2010) Effect of different organic solvents and treatment times on secondary structure and thermal properties of silk fibroin films. Curr Res Chem 1:1–9 Nuanchai K, Wilaiwan S, Prasong S (2010) Effect of different organic solvents and treatment times on secondary structure and thermal properties of silk fibroin films. Curr Res Chem 1:1–9
20.
Zurück zum Zitat Sashina ES, Bochek AM, Novoselov NP, Kirichenko DA (2006) Structure and solubility of natural silk fibroin. Russ J Appl Chem 79(6):869–876CrossRef Sashina ES, Bochek AM, Novoselov NP, Kirichenko DA (2006) Structure and solubility of natural silk fibroin. Russ J Appl Chem 79(6):869–876CrossRef
21.
Zurück zum Zitat Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953CrossRef Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953CrossRef
22.
Zurück zum Zitat Holland C, Numata K, Rnjak-Kovacina J, Seib FP (2019) The Biomedical use of silk: past, present, future. Adv Healthcare Mater 8(1):1800465CrossRef Holland C, Numata K, Rnjak-Kovacina J, Seib FP (2019) The Biomedical use of silk: past, present, future. Adv Healthcare Mater 8(1):1800465CrossRef
23.
Zurück zum Zitat Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470CrossRef Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470CrossRef
24.
Zurück zum Zitat Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim H-J, Kim HS et al (2008) In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 29(24–25):3415–3428CrossRef Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim H-J, Kim HS et al (2008) In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 29(24–25):3415–3428CrossRef
25.
Zurück zum Zitat Thurber AE, Omenetto FG, Kaplan DL (2015) In vivo bioresponses to silk proteins. Biomaterials 71:145–157CrossRef Thurber AE, Omenetto FG, Kaplan DL (2015) In vivo bioresponses to silk proteins. Biomaterials 71:145–157CrossRef
26.
Zurück zum Zitat Cao Y, Wang B (2009) Biodegradation of silk biomaterials. IJMS 10(4):1514–1524CrossRef Cao Y, Wang B (2009) Biodegradation of silk biomaterials. IJMS 10(4):1514–1524CrossRef
27.
Zurück zum Zitat Nguyen TP, Nguyen QV, Nguyen V-H, Le T-H, Huynh VQN, Vo D-VN et al (2019) Silk fibroin-based biomaterials for biomedical applications: a review. Polymers 11(12):1933CrossRef Nguyen TP, Nguyen QV, Nguyen V-H, Le T-H, Huynh VQN, Vo D-VN et al (2019) Silk fibroin-based biomaterials for biomedical applications: a review. Polymers 11(12):1933CrossRef
28.
Zurück zum Zitat Zhang Y-Q, Shen W-D, Xiang R-L, Zhuge L-J, Gao W-J, Wang W-B (2007) Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanopart Res 9(5):885–900CrossRef Zhang Y-Q, Shen W-D, Xiang R-L, Zhuge L-J, Gao W-J, Wang W-B (2007) Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanopart Res 9(5):885–900CrossRef
29.
Zurück zum Zitat Montalbán MG, Carissimi G, Lozano-Pérez AA, Cenis JL, Coburn JM, Kaplan DL, Víllora G (2018) Biopolymeric nanoparticle synthesis in ionic liquids. Recent Adv Ionic Liq, pp 3–26 Montalbán MG, Carissimi G, Lozano-Pérez AA, Cenis JL, Coburn JM, Kaplan DL, Víllora G (2018) Biopolymeric nanoparticle synthesis in ionic liquids. Recent Adv Ionic Liq, pp 3–26
30.
Zurück zum Zitat Xie F, Zhang H, Shao H, Hu X (2006) Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution. Int J Biol Macromol 38(3–5):284–288CrossRef Xie F, Zhang H, Shao H, Hu X (2006) Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution. Int J Biol Macromol 38(3–5):284–288CrossRef
31.
Zurück zum Zitat Zhou P, Xie X, Knight DP, Zong X-H, Deng F, Yao W-H (2004) Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid-state NMR. Biochemistry 43(35):11302–11311CrossRef Zhou P, Xie X, Knight DP, Zong X-H, Deng F, Yao W-H (2004) Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid-state NMR. Biochemistry 43(35):11302–11311CrossRef
32.
Zurück zum Zitat Percot A, Colomban P, Paris C, Dinh HM, Wojcieszak M, Mauchamp B (2014) Water dependent structural changes of silk from Bombyx mori gland to fibre as evidenced by Raman and IR spectroscopies. Vib Spectrosc 73:79–89CrossRef Percot A, Colomban P, Paris C, Dinh HM, Wojcieszak M, Mauchamp B (2014) Water dependent structural changes of silk from Bombyx mori gland to fibre as evidenced by Raman and IR spectroscopies. Vib Spectrosc 73:79–89CrossRef
33.
Zurück zum Zitat Carissimi G, Baronio CM, Montalbán MG, Víllora G, Barth A (2020) On the secondary structure of silk fibroin nanoparticles obtained using ionic liquids: an infrared spectroscopy study. Polymers 12(6):1294CrossRef Carissimi G, Baronio CM, Montalbán MG, Víllora G, Barth A (2020) On the secondary structure of silk fibroin nanoparticles obtained using ionic liquids: an infrared spectroscopy study. Polymers 12(6):1294CrossRef
34.
Zurück zum Zitat Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612–1631CrossRef Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612–1631CrossRef
35.
Zurück zum Zitat Tomeh MA, Hadianamrei R, Zhao X (2019) Silk fibroin as a functional biomaterial for drug and gene delivery. Pharmaceutics 11(10):494CrossRef Tomeh MA, Hadianamrei R, Zhao X (2019) Silk fibroin as a functional biomaterial for drug and gene delivery. Pharmaceutics 11(10):494CrossRef
36.
Zurück zum Zitat Myung SJ, Kim H-S, Kim Y, Chen P, Jin H-J (2008) Fluorescent silk fibroin nanoparticles prepared using a reverse microemulsion. Macromol Res 16(7):604–608CrossRef Myung SJ, Kim H-S, Kim Y, Chen P, Jin H-J (2008) Fluorescent silk fibroin nanoparticles prepared using a reverse microemulsion. Macromol Res 16(7):604–608CrossRef
37.
Zurück zum Zitat Qu J, Liu Y, Yu Y, Li J, Luo J, Li M (2014 Nov) Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin. Mater Sci Eng, C 44:166–174CrossRef Qu J, Liu Y, Yu Y, Li J, Luo J, Li M (2014 Nov) Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin. Mater Sci Eng, C 44:166–174CrossRef
38.
Zurück zum Zitat Zhao Z, Li Y, Chen A-Z, Zheng Z-J, Hu J-Y, Li J-S et al (2013) Generation of silk fibroin nanoparticles via solution-enhanced dispersion by supercritical CO2. Ind Eng Chem Res 52(10):3752–3761CrossRef Zhao Z, Li Y, Chen A-Z, Zheng Z-J, Hu J-Y, Li J-S et al (2013) Generation of silk fibroin nanoparticles via solution-enhanced dispersion by supercritical CO2. Ind Eng Chem Res 52(10):3752–3761CrossRef
39.
Zurück zum Zitat Zhao Z, Li Y, Xie M-B (2015) Silk Fibroin-based nanoparticles for drug delivery. IJMS 16(3):4880–4903CrossRef Zhao Z, Li Y, Xie M-B (2015) Silk Fibroin-based nanoparticles for drug delivery. IJMS 16(3):4880–4903CrossRef
40.
Zurück zum Zitat Lammel AS, Hu X, Park S-H, Kaplan DL, Scheibel TR (2010) Controlling silk fibroin particle features for drug delivery. Biomaterials 31(16):4583–4591CrossRef Lammel AS, Hu X, Park S-H, Kaplan DL, Scheibel TR (2010) Controlling silk fibroin particle features for drug delivery. Biomaterials 31(16):4583–4591CrossRef
41.
Zurück zum Zitat Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y (2014) Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed Res Int 2014:1–12CrossRef Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y (2014) Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed Res Int 2014:1–12CrossRef
42.
Zurück zum Zitat Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed: Nanotechnol Biol Med. 2(1):8–21CrossRef Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed: Nanotechnol Biol Med. 2(1):8–21CrossRef
43.
Zurück zum Zitat Wu Y, MacKay JA, McDaniel JR, Chilkoti A, Clark RL (2009 Jan 12) Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying. Biomacromol 10(1):19–24CrossRef Wu Y, MacKay JA, McDaniel JR, Chilkoti A, Clark RL (2009 Jan 12) Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying. Biomacromol 10(1):19–24CrossRef
44.
Zurück zum Zitat Jaworek A, Sobczyk AT (2008) Electrospraying route to nanotechnology: an overview. J Electrostat 66(3–4):197–219CrossRef Jaworek A, Sobczyk AT (2008) Electrospraying route to nanotechnology: an overview. J Electrostat 66(3–4):197–219CrossRef
45.
Zurück zum Zitat Ekwall P, Mandell L, Solyom P (1971) The solution phase with reversed micelles in the cetyl trimethylammonium bromide-hexanol-water system. J Colloid Interface Sci 35(2):266–272CrossRef Ekwall P, Mandell L, Solyom P (1971) The solution phase with reversed micelles in the cetyl trimethylammonium bromide-hexanol-water system. J Colloid Interface Sci 35(2):266–272CrossRef
46.
Zurück zum Zitat Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Coll Interface Sci 128–130:5–15CrossRef Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Coll Interface Sci 128–130:5–15CrossRef
47.
Zurück zum Zitat Suo QL, He WZ, Huang YC, Li CP, Hong HL, Li YX et al (2005) Micronization of the natural pigment-bixin by the SEDS process through prefilming atomization. Powder Technol 154(2–3):110–115CrossRef Suo QL, He WZ, Huang YC, Li CP, Hong HL, Li YX et al (2005) Micronization of the natural pigment-bixin by the SEDS process through prefilming atomization. Powder Technol 154(2–3):110–115CrossRef
48.
Zurück zum Zitat Kang Y, Yin G, Ouyang P, Huang Z, Yao Y, Liao X et al (2008) Preparation of PLLA/PLGA microparticles using solution enhanced dispersion by supercritical fluids (SEDS). J Colloid Interface Sci 322(1):87–94CrossRef Kang Y, Yin G, Ouyang P, Huang Z, Yao Y, Liao X et al (2008) Preparation of PLLA/PLGA microparticles using solution enhanced dispersion by supercritical fluids (SEDS). J Colloid Interface Sci 322(1):87–94CrossRef
49.
Zurück zum Zitat Wongpinyochit T, Totten JD, Johnston BF, Seib FP (2019) Microfluidic-assisted silk nanoparticle tuning. Nanoscale Advances 1(2):873–883CrossRef Wongpinyochit T, Totten JD, Johnston BF, Seib FP (2019) Microfluidic-assisted silk nanoparticle tuning. Nanoscale Advances 1(2):873–883CrossRef
50.
Zurück zum Zitat Rezaei F, Damoogh S, Reis RL, Kundu SC, Mottaghitalab F, Farokhi M (2020) Dual drug delivery system based on pH-sensitive silk fibroin/alginate nanoparticles entrapped in PNIPAM hydrogel for treating severe infected burn wound. Biofabrication 13(1):015005CrossRef Rezaei F, Damoogh S, Reis RL, Kundu SC, Mottaghitalab F, Farokhi M (2020) Dual drug delivery system based on pH-sensitive silk fibroin/alginate nanoparticles entrapped in PNIPAM hydrogel for treating severe infected burn wound. Biofabrication 13(1):015005CrossRef
51.
Zurück zum Zitat Opálková Šišková A, Kozma E, Opálek A, Kroneková Z, Kleinová A, Nagy Š et al (2020) Diclofenac embedded in silk fibroin fibers as a drug delivery system. Materials 13(16):3580CrossRef Opálková Šišková A, Kozma E, Opálek A, Kroneková Z, Kleinová A, Nagy Š et al (2020) Diclofenac embedded in silk fibroin fibers as a drug delivery system. Materials 13(16):3580CrossRef
52.
Zurück zum Zitat Yang W, Xu H, Lan Y, Zhu Q, Liu Y, Huang S et al (2019) Preparation and characterisation of a novel silk fibroin/hyaluronic acid/sodium alginate scaffold for skin repair. Int J Biol Macromol 130:58–67CrossRef Yang W, Xu H, Lan Y, Zhu Q, Liu Y, Huang S et al (2019) Preparation and characterisation of a novel silk fibroin/hyaluronic acid/sodium alginate scaffold for skin repair. Int J Biol Macromol 130:58–67CrossRef
53.
Zurück zum Zitat Brito-Pereira R, Correia DM, Ribeiro C, Francesko A, Etxebarria I, Pérez-Álvarez L et al (2018) Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applications. Compos B Eng 141:70–75CrossRef Brito-Pereira R, Correia DM, Ribeiro C, Francesko A, Etxebarria I, Pérez-Álvarez L et al (2018) Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applications. Compos B Eng 141:70–75CrossRef
54.
Zurück zum Zitat Mwangi TK, Bowles RD, Tainter DM, Bell RD, Kaplan DL, Setton LA (2015) Synthesis and characterization of silk fibroin microparticles for intra-articular drug delivery. Int J Pharm 485(1–2):7–14CrossRef Mwangi TK, Bowles RD, Tainter DM, Bell RD, Kaplan DL, Setton LA (2015) Synthesis and characterization of silk fibroin microparticles for intra-articular drug delivery. Int J Pharm 485(1–2):7–14CrossRef
55.
Zurück zum Zitat Dong Y, Dong P, Huang D, Mei L, Xia Y, Wang Z et al (2015) Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. Eur J Pharm Biopharm 91:82–90CrossRef Dong Y, Dong P, Huang D, Mei L, Xia Y, Wang Z et al (2015) Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. Eur J Pharm Biopharm 91:82–90CrossRef
56.
Zurück zum Zitat Tallian C, Herrero-Rollett A, Stadler K, Vielnascher R, Wieland K, Weihs AM et al (2018) Structural insights into pH-responsive drug release of self-assembling human serum albumin-silk fibroin nanocapsules. Eur J Pharm Biopharm 133:176–187CrossRef Tallian C, Herrero-Rollett A, Stadler K, Vielnascher R, Wieland K, Weihs AM et al (2018) Structural insights into pH-responsive drug release of self-assembling human serum albumin-silk fibroin nanocapsules. Eur J Pharm Biopharm 133:176–187CrossRef
57.
Zurück zum Zitat Crivelli B, Bari E, Perteghella S, Catenacci L, Sorrenti M, Mocchi M et al (2019) Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. Eur J Pharm Biopharm 137:37–45CrossRef Crivelli B, Bari E, Perteghella S, Catenacci L, Sorrenti M, Mocchi M et al (2019) Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. Eur J Pharm Biopharm 137:37–45CrossRef
58.
Zurück zum Zitat Liu C, Lin L, Huang Z, Wu Q, Jiang J, Lv L et al (2019) Novel inhalable ciprofloxacin dry powders for bronchiectasis therapy: mannitol–silk fibroin binary microparticles with high-payload and improved aerosolized properties. AAPS PharmSciTech 20(2):85CrossRef Liu C, Lin L, Huang Z, Wu Q, Jiang J, Lv L et al (2019) Novel inhalable ciprofloxacin dry powders for bronchiectasis therapy: mannitol–silk fibroin binary microparticles with high-payload and improved aerosolized properties. AAPS PharmSciTech 20(2):85CrossRef
59.
Zurück zum Zitat Blasioli DJ, Kahn BT, Delisle SM, Bendele AM, Tweed-Kent AM, Santos MR et al (2017) Analgesic and anti-inflammatory efficacy of celecoxib loaded silk fibroin hydrogels after intra-articular (IA) injection in the rat peptidoglycan polysaccharide (PGPS) model of induced joint inflammation. Osteoarthritis Cartilage 25:S428–S429CrossRef Blasioli DJ, Kahn BT, Delisle SM, Bendele AM, Tweed-Kent AM, Santos MR et al (2017) Analgesic and anti-inflammatory efficacy of celecoxib loaded silk fibroin hydrogels after intra-articular (IA) injection in the rat peptidoglycan polysaccharide (PGPS) model of induced joint inflammation. Osteoarthritis Cartilage 25:S428–S429CrossRef
60.
Zurück zum Zitat Giménez-Siurana A, Gómez García F, Pagan Bernabeu A, Lozano-Pérez AA, Aznar-Cervantes SD, Cenis JL et al (2020) Chemoprevention of experimental periodontitis in diabetic rats with silk fibroin nanoparticles loaded with resveratrol. Antioxidants 9(1):85CrossRef Giménez-Siurana A, Gómez García F, Pagan Bernabeu A, Lozano-Pérez AA, Aznar-Cervantes SD, Cenis JL et al (2020) Chemoprevention of experimental periodontitis in diabetic rats with silk fibroin nanoparticles loaded with resveratrol. Antioxidants 9(1):85CrossRef
61.
Zurück zum Zitat Yao Q, Lan Q-H, Jiang X, Du C-C, Zhai Y-Y, Shen X et al (2020) Bioinspired biliverdin/silk fibroin hydrogel for antiglioma photothermal therapy and wound healing. Theranostics 10(25):11719CrossRef Yao Q, Lan Q-H, Jiang X, Du C-C, Zhai Y-Y, Shen X et al (2020) Bioinspired biliverdin/silk fibroin hydrogel for antiglioma photothermal therapy and wound healing. Theranostics 10(25):11719CrossRef
62.
Zurück zum Zitat Takeuchi I, Shimamura Y, Kakami Y, Kameda T, Hattori K, Miura S et al (2019) Transdermal delivery of 40-nm silk fibroin nanoparticles. Colloids Surf, B 175:564–568CrossRef Takeuchi I, Shimamura Y, Kakami Y, Kameda T, Hattori K, Miura S et al (2019) Transdermal delivery of 40-nm silk fibroin nanoparticles. Colloids Surf, B 175:564–568CrossRef
63.
Zurück zum Zitat Rahmani H, Fattahi A, Sadrjavadi K, Khaledian S, Shokoohinia Y (2019) Preparation and characterization of silk fibroin nanoparticles as a potential drug delivery system for 5-fluorouracil. Advanced pharmaceutical bulletin 9(4):601CrossRef Rahmani H, Fattahi A, Sadrjavadi K, Khaledian S, Shokoohinia Y (2019) Preparation and characterization of silk fibroin nanoparticles as a potential drug delivery system for 5-fluorouracil. Advanced pharmaceutical bulletin 9(4):601CrossRef
64.
Zurück zum Zitat Zhao Z, Chen A, Li Y, Hu J, Liu X, Li J et al (2012) Fabrication of silk fibroin nanoparticles for controlled drug delivery. J Nanopart Res 14(4):1–10CrossRef Zhao Z, Chen A, Li Y, Hu J, Liu X, Li J et al (2012) Fabrication of silk fibroin nanoparticles for controlled drug delivery. J Nanopart Res 14(4):1–10CrossRef
65.
Zurück zum Zitat Mottaghitalab F, Farokhi M, Shokrgozar MA, Atyabi F, Hosseinkhani H (2015) Silk fibroin nanoparticle as a novel drug delivery system. J Control Release 206:161–176CrossRef Mottaghitalab F, Farokhi M, Shokrgozar MA, Atyabi F, Hosseinkhani H (2015) Silk fibroin nanoparticle as a novel drug delivery system. J Control Release 206:161–176CrossRef
66.
Zurück zum Zitat Kundu J, Chung Y-I, Kim YH, Tae G, Kundu SC (2010) Silk fibroin nanoparticles for cellular uptake and control release. Int J Pharm 388(1–2):242–250CrossRef Kundu J, Chung Y-I, Kim YH, Tae G, Kundu SC (2010) Silk fibroin nanoparticles for cellular uptake and control release. Int J Pharm 388(1–2):242–250CrossRef
67.
Zurück zum Zitat Wenk E, Merkle HP, Meinel L (2011) Silk fibroin as a vehicle for drug delivery applications. J Control Release 150(2):128–141CrossRef Wenk E, Merkle HP, Meinel L (2011) Silk fibroin as a vehicle for drug delivery applications. J Control Release 150(2):128–141CrossRef
68.
Zurück zum Zitat Jastrzebska K, Kucharczyk K, Florczak A, Dondajewska E, Mackiewicz A, Dams-Kozlowska H (2015) Silk as an innovative biomaterial for cancer therapy. Rep Pract Oncol Radiother 20(2):87–98CrossRef Jastrzebska K, Kucharczyk K, Florczak A, Dondajewska E, Mackiewicz A, Dams-Kozlowska H (2015) Silk as an innovative biomaterial for cancer therapy. Rep Pract Oncol Radiother 20(2):87–98CrossRef
69.
Zurück zum Zitat Seib FP, Jones GT, Rnjak-Kovacina J, Lin Y, Kaplan DL (2013) pH-dependent anticancer drug release from silk nanoparticles. Adv Healthcare Mater 2(12):1606–1611CrossRef Seib FP, Jones GT, Rnjak-Kovacina J, Lin Y, Kaplan DL (2013) pH-dependent anticancer drug release from silk nanoparticles. Adv Healthcare Mater 2(12):1606–1611CrossRef
70.
Zurück zum Zitat Mathur AB, Gupta V (2010) Silk fibroin-derived nanoparticles for biomedical applications. Nanomedicine 5(5):807–820CrossRef Mathur AB, Gupta V (2010) Silk fibroin-derived nanoparticles for biomedical applications. Nanomedicine 5(5):807–820CrossRef
71.
Zurück zum Zitat Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11(6):673–692CrossRef Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11(6):673–692CrossRef
72.
Zurück zum Zitat Pham DT, Tiyaboonchai W (2020) Fibroin nanoparticles: a promising drug delivery system. Drug Delivery 27(1):431–448CrossRef Pham DT, Tiyaboonchai W (2020) Fibroin nanoparticles: a promising drug delivery system. Drug Delivery 27(1):431–448CrossRef
73.
Zurück zum Zitat Raudino A, Cambria A, Sarpietro MG, Satriano C (2000) Binding of lipid vesicles to protein-coated solid polymer surfaces: a model for cell adhesion to artificial biocompatible materials. J Colloid Interface Sci 231(1):66–73CrossRef Raudino A, Cambria A, Sarpietro MG, Satriano C (2000) Binding of lipid vesicles to protein-coated solid polymer surfaces: a model for cell adhesion to artificial biocompatible materials. J Colloid Interface Sci 231(1):66–73CrossRef
74.
Zurück zum Zitat Wang X, Kluge JA, Leisk GG, Kaplan DL (2008) Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29(8):1054–1064CrossRef Wang X, Kluge JA, Leisk GG, Kaplan DL (2008) Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29(8):1054–1064CrossRef
75.
Zurück zum Zitat Kim U-J, Park J, Joo Kim H, Wada M, Kaplan DL (2005) Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26(15):2775–2785CrossRef Kim U-J, Park J, Joo Kim H, Wada M, Kaplan DL (2005) Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26(15):2775–2785CrossRef
76.
Zurück zum Zitat Osaka T, Nakanishi T, Shanmugam S, Takahama S, Zhang H (2009) Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells. Colloids Surf, B 71(2):325–330CrossRef Osaka T, Nakanishi T, Shanmugam S, Takahama S, Zhang H (2009) Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells. Colloids Surf, B 71(2):325–330CrossRef
77.
Zurück zum Zitat Song W, Gregory DA, Al-Janabi H, Muthana M, Cai Z, Zhao X (2019) Magnetic-silk/polyethyleneimine core-shell nanoparticles for targeted gene delivery into human breast cancer cells. Int J Pharm 555:322–336CrossRef Song W, Gregory DA, Al-Janabi H, Muthana M, Cai Z, Zhao X (2019) Magnetic-silk/polyethyleneimine core-shell nanoparticles for targeted gene delivery into human breast cancer cells. Int J Pharm 555:322–336CrossRef
78.
Zurück zum Zitat Numata K, Reagan MR, Goldstein RH, Rosenblatt M, Kaplan DL (2011) Spider silk-based gene carriers for tumor cell-specific delivery. Bioconjug Chem 22(8):1605–1610CrossRef Numata K, Reagan MR, Goldstein RH, Rosenblatt M, Kaplan DL (2011) Spider silk-based gene carriers for tumor cell-specific delivery. Bioconjug Chem 22(8):1605–1610CrossRef
79.
Zurück zum Zitat Numata K, Mieszawska-Czajkowska AJ, Kvenvold LA, Kaplan DL (2012) Silk-based nanocomplexes with tumor-homing peptides for tumor-specific gene delivery. Macromol Biosci 12(1):75–82CrossRef Numata K, Mieszawska-Czajkowska AJ, Kvenvold LA, Kaplan DL (2012) Silk-based nanocomplexes with tumor-homing peptides for tumor-specific gene delivery. Macromol Biosci 12(1):75–82CrossRef
80.
Zurück zum Zitat Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci 99(11):7444–7449CrossRef Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci 99(11):7444–7449CrossRef
81.
Zurück zum Zitat Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ et al (2003) Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J Biol Chem 278(1):585–590CrossRef Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ et al (2003) Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J Biol Chem 278(1):585–590CrossRef
82.
Zurück zum Zitat Holm T, Johansson H, Lundberg P, Pooga M, Lindgren M, Langel Ü (2006) Studying the uptake of cell-penetrating peptides. Nat Protoc 1(2):1001–1005CrossRef Holm T, Johansson H, Lundberg P, Pooga M, Lindgren M, Langel Ü (2006) Studying the uptake of cell-penetrating peptides. Nat Protoc 1(2):1001–1005CrossRef
83.
Zurück zum Zitat Gupta V, Aseh A, Ríos CN, Aggarwal BB, Mathur AB (2009) Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomed 4:115CrossRef Gupta V, Aseh A, Ríos CN, Aggarwal BB, Mathur AB (2009) Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomed 4:115CrossRef
84.
Zurück zum Zitat Li H, Tian J, Wu A, Wang J, Ge C, Sun Z (2016) Self-assembled silk fibroin nanoparticles loaded with binary drugs in the treatment of breast carcinoma. Int J Nanomed 11:4373CrossRef Li H, Tian J, Wu A, Wang J, Ge C, Sun Z (2016) Self-assembled silk fibroin nanoparticles loaded with binary drugs in the treatment of breast carcinoma. Int J Nanomed 11:4373CrossRef
85.
Zurück zum Zitat Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR (2010) Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm 398(1–2):190–203CrossRef Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR (2010) Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm 398(1–2):190–203CrossRef
86.
Zurück zum Zitat Palit S, Kar S, Sharma G, Das PK (2015) Hesperetin Induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway: breast cancer cell apoptosis by hesperetin. J Cell Physiol 230(8):1729–1739CrossRef Palit S, Kar S, Sharma G, Das PK (2015) Hesperetin Induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway: breast cancer cell apoptosis by hesperetin. J Cell Physiol 230(8):1729–1739CrossRef
87.
Zurück zum Zitat Kakar SS, Jala VR, Fong MY (2012) Synergistic cytotoxic action of cisplatin and withaferin A on ovarian cancer cell lines. Biochem Biophys Res Commun 423(4):819–825CrossRef Kakar SS, Jala VR, Fong MY (2012) Synergistic cytotoxic action of cisplatin and withaferin A on ovarian cancer cell lines. Biochem Biophys Res Commun 423(4):819–825CrossRef
88.
Zurück zum Zitat El-Awady E-SE, Moustafa YM, Abo-Elmatty DM, Radwan A (2011) Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. Eur J Pharmacol 650(1):335–41CrossRef El-Awady E-SE, Moustafa YM, Abo-Elmatty DM, Radwan A (2011) Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. Eur J Pharmacol 650(1):335–41CrossRef
89.
Zurück zum Zitat Kim J-H, Kim Y-S, Park K, Lee S, Nam HY, Min KH et al (2008) Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release 127(1):41–49CrossRef Kim J-H, Kim Y-S, Park K, Lee S, Nam HY, Min KH et al (2008) Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release 127(1):41–49CrossRef
90.
Zurück zum Zitat Ding D, Zhu Z, Liu Q, Wang J, Hu Y, Jiang X et al (2011) Cisplatin-loaded gelatin-poly(acrylic acid) nanoparticles: Synthesis, antitumor efficiency in vivo and penetration in tumors. Eur J Pharm Biopharm 79(1):142–149CrossRef Ding D, Zhu Z, Liu Q, Wang J, Hu Y, Jiang X et al (2011) Cisplatin-loaded gelatin-poly(acrylic acid) nanoparticles: Synthesis, antitumor efficiency in vivo and penetration in tumors. Eur J Pharm Biopharm 79(1):142–149CrossRef
91.
Zurück zum Zitat Li M-Y, Zhao Y, Tong T, Hou X-H, Fang B-S, Wu S-Q et al (2013) Study of the degradation mechanism of Chinese historic silk (Bombyx mori) for the purpose of conservation. Polym Degrad Stab 98(3):727–735CrossRef Li M-Y, Zhao Y, Tong T, Hou X-H, Fang B-S, Wu S-Q et al (2013) Study of the degradation mechanism of Chinese historic silk (Bombyx mori) for the purpose of conservation. Polym Degrad Stab 98(3):727–735CrossRef
92.
Zurück zum Zitat Yang M-H, Chung T-W, Lu Y-S, Chen Y-L, Tsai W-C, Jong S-B et al (2015) Activation of the ubiquitin proteasome pathway by silk fibroin modified chitosan nanoparticles in hepatic cancer cells. IJMS 16(1):1657–1676CrossRef Yang M-H, Chung T-W, Lu Y-S, Chen Y-L, Tsai W-C, Jong S-B et al (2015) Activation of the ubiquitin proteasome pathway by silk fibroin modified chitosan nanoparticles in hepatic cancer cells. IJMS 16(1):1657–1676CrossRef
93.
Zurück zum Zitat Chi N-H, Yang M-C, Chung T-W, Chou N-K, Wang S-S (2013) Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction. Carbohyd Polym 92(1):591–597CrossRef Chi N-H, Yang M-C, Chung T-W, Chou N-K, Wang S-S (2013) Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction. Carbohyd Polym 92(1):591–597CrossRef
94.
Zurück zum Zitat Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329(5991):528–531CrossRef Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329(5991):528–531CrossRef
95.
Zurück zum Zitat Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437CrossRef Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437CrossRef
96.
Zurück zum Zitat Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146CrossRef Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146CrossRef
97.
Zurück zum Zitat Cao Y, Gu Y, Ma H, Bai J, Liu L, Zhao P et al (2010) Self-assembled nanoparticle drug delivery systems from galactosylated polysaccharide–doxorubicin conjugate loaded doxorubicin. Int J Biol Macromol 46(2):245–249CrossRef Cao Y, Gu Y, Ma H, Bai J, Liu L, Zhao P et al (2010) Self-assembled nanoparticle drug delivery systems from galactosylated polysaccharide–doxorubicin conjugate loaded doxorubicin. Int J Biol Macromol 46(2):245–249CrossRef
98.
Zurück zum Zitat Subia B, Chandra S, Talukdar S, Kundu SC (2014) Folate conjugated silk fibroin nanocarriers for targeted drug delivery. Integr Biol 6(2):203–214CrossRef Subia B, Chandra S, Talukdar S, Kundu SC (2014) Folate conjugated silk fibroin nanocarriers for targeted drug delivery. Integr Biol 6(2):203–214CrossRef
99.
Zurück zum Zitat Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discovery 4(2):145–160CrossRef Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discovery 4(2):145–160CrossRef
100.
Zurück zum Zitat Zhang Y, Hong H, Myklejord DV, Cai W (2011) Molecular imaging with SERS-active nanoparticles. Small 7(23):3261–3269CrossRef Zhang Y, Hong H, Myklejord DV, Cai W (2011) Molecular imaging with SERS-active nanoparticles. Small 7(23):3261–3269CrossRef
101.
Zurück zum Zitat Horo H, Bhattacharyya S, Mandal B, Kundu LM (2021) Synthesis of functionalized silk-coated chitosan-gold nanoparticles and microparticles for target-directed delivery of antitumor agents. Carbohyd Polym 258:117659CrossRef Horo H, Bhattacharyya S, Mandal B, Kundu LM (2021) Synthesis of functionalized silk-coated chitosan-gold nanoparticles and microparticles for target-directed delivery of antitumor agents. Carbohyd Polym 258:117659CrossRef
102.
Zurück zum Zitat Mottaghitalab F, Kiani M, Farokhi M, Kundu SC, Reis RL, Gholami M et al (2017) Targeted delivery system based on gemcitabine-loaded silk fibroin nanoparticles for lung cancer therapy. ACS Appl Mater Interfaces 9(37):31600–31611CrossRef Mottaghitalab F, Kiani M, Farokhi M, Kundu SC, Reis RL, Gholami M et al (2017) Targeted delivery system based on gemcitabine-loaded silk fibroin nanoparticles for lung cancer therapy. ACS Appl Mater Interfaces 9(37):31600–31611CrossRef
103.
Zurück zum Zitat Pandey V, Haider T, Chandak AR, Chakraborty A, Banerjee S, Soni V (2020) Technetium labeled doxorubicin loaded silk fibroin nanoparticles: optimization, characterization and in vitro evaluation. Journal of Drug Delivery Science and Technology 56:101539CrossRef Pandey V, Haider T, Chandak AR, Chakraborty A, Banerjee S, Soni V (2020) Technetium labeled doxorubicin loaded silk fibroin nanoparticles: optimization, characterization and in vitro evaluation. Journal of Drug Delivery Science and Technology 56:101539CrossRef
104.
Zurück zum Zitat Arumugam M, Murugesan B, Pandiyan N, Chinnalagu DK, Rangasamy G, Mahalingam S (2021) Electrospinning cellulose acetate/silk fibroin/Au-Ag hybrid composite nanofiber for enhanced biocidal activity against MCF-7 breast cancer cell. Mater Sci Eng, C 123:112019CrossRef Arumugam M, Murugesan B, Pandiyan N, Chinnalagu DK, Rangasamy G, Mahalingam S (2021) Electrospinning cellulose acetate/silk fibroin/Au-Ag hybrid composite nanofiber for enhanced biocidal activity against MCF-7 breast cancer cell. Mater Sci Eng, C 123:112019CrossRef
105.
Zurück zum Zitat Zhang X, Huang Y, Song H, Canup BSB, Gou S, She Z et al (2020) Inhibition of growth and lung metastasis of breast cancer by tumor-homing triple-bioresponsive nanotherapeutics. J Control Release 328:454–469CrossRef Zhang X, Huang Y, Song H, Canup BSB, Gou S, She Z et al (2020) Inhibition of growth and lung metastasis of breast cancer by tumor-homing triple-bioresponsive nanotherapeutics. J Control Release 328:454–469CrossRef
106.
Zurück zum Zitat Gou S, Huang Y, Wan Y, Ma Y, Zhou X, Tong X et al (2019) Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis. Biomaterials 212:39–54CrossRef Gou S, Huang Y, Wan Y, Ma Y, Zhou X, Tong X et al (2019) Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis. Biomaterials 212:39–54CrossRef
107.
Zurück zum Zitat Tan M, Liu W, Liu F, Zhang W, Gao H, Cheng J et al (2019) Silk Fibroin-coated nanoagents for acidic lysosome targeting by a functional preservation strategy in cancer chemotherapy. Theranostics 9(4):961–973CrossRef Tan M, Liu W, Liu F, Zhang W, Gao H, Cheng J et al (2019) Silk Fibroin-coated nanoagents for acidic lysosome targeting by a functional preservation strategy in cancer chemotherapy. Theranostics 9(4):961–973CrossRef
108.
Zurück zum Zitat Bari E, Serra M, Paolillo M, Bernardi E, Tengattini S, Piccinini F et al (2021) Silk Fibroin nanoparticle functionalization with Arg-Gly-Asp cyclopentapeptide promotes active targeting for tumor site-specific delivery. Cancers 13(5):1185CrossRef Bari E, Serra M, Paolillo M, Bernardi E, Tengattini S, Piccinini F et al (2021) Silk Fibroin nanoparticle functionalization with Arg-Gly-Asp cyclopentapeptide promotes active targeting for tumor site-specific delivery. Cancers 13(5):1185CrossRef
109.
Zurück zum Zitat Bossi AM, Bucciarelli A, Maniglio D (2021) Molecularly imprinted silk fibroin nanoparticles. ACS Appl Mater Interfaces 13(27):31431–31439CrossRef Bossi AM, Bucciarelli A, Maniglio D (2021) Molecularly imprinted silk fibroin nanoparticles. ACS Appl Mater Interfaces 13(27):31431–31439CrossRef
110.
Zurück zum Zitat Sun N, Lei R, Xu J, Kundu SC, Cai Y, Yao J et al (2019) Fabricated porous silk fibroin particles for pH-responsive drug delivery and targeting of tumor cells. J Mater Sci 54(4):3319–3330CrossRef Sun N, Lei R, Xu J, Kundu SC, Cai Y, Yao J et al (2019) Fabricated porous silk fibroin particles for pH-responsive drug delivery and targeting of tumor cells. J Mater Sci 54(4):3319–3330CrossRef
111.
Zurück zum Zitat Florczak A, Mackiewicz A, Dams-Kozlowska H (2014) Functionalized spider silk spheres as drug carriers for targeted cancer therapy. Biomacromol 15(8):2971–2981CrossRef Florczak A, Mackiewicz A, Dams-Kozlowska H (2014) Functionalized spider silk spheres as drug carriers for targeted cancer therapy. Biomacromol 15(8):2971–2981CrossRef
112.
Zurück zum Zitat Kim SY, Naskar D, Kundu SC, Bishop DP, Doble PA, Boddy AV et al (2015) Formulation of biologically-inspired silk-based drug carriers for pulmonary delivery targeted for lung cancer. Sci Rep 5(1):11878CrossRef Kim SY, Naskar D, Kundu SC, Bishop DP, Doble PA, Boddy AV et al (2015) Formulation of biologically-inspired silk-based drug carriers for pulmonary delivery targeted for lung cancer. Sci Rep 5(1):11878CrossRef
Metadaten
Titel
A review on structure, preparation and applications of silk fibroin-based nano-drug delivery systems
verfasst von
Praharsh Kumar Mandadhi Rajendra
Bala Sai Soujith Nidamanuri
Anjali Puthusserikkunnu Balan
Senthil Venkatachalam
Natarajan Jawahar
Publikationsdatum
01.07.2022
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 7/2022
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-022-05526-z

Weitere Artikel der Ausgabe 7/2022

Journal of Nanoparticle Research 7/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.