Skip to main content


Weitere Artikel dieser Ausgabe durch Wischen aufrufen

06.10.2016 | Ausgabe 1/2017 Open Access

Journal of Scientific Computing 1/2017

A Roadmap to Well Posed and Stable Problems in Computational Physics

Journal of Scientific Computing > Ausgabe 1/2017
Jan Nordström
Wichtige Hinweise
A first version of this paper was given in AIAA paper No 2015-3197 on 22–26 June 2015 at 22nd AIAA Computational Fluid Dynamics Conference in Dallas, TX, USA.


All numerical calculations will fail to provide a reliable answer unless the continuous problem under consideration is well posed. Well-posedness depends in most cases only on the choice of boundary conditions. In this paper we will highlight this fact, and exemplify by discussing well-posedness of a prototype problem: the time-dependent compressible Navier–Stokes equations. We do not deal with discontinuous problems, smooth solutions with smooth and compatible data are considered. In particular, we will discuss how many boundary conditions are required, where to impose them and which form they should have in order to obtain a well posed problem. Once the boundary conditions are known, one issue remains; they can be imposed weakly or strongly. It is shown that the weak and strong boundary procedures produce similar continuous energy estimates. We conclude by relating the well-posedness results to energy-stability of a numerical approximation on summation-by-parts form. It is shown that the results obtained for weak boundary conditions in the well-posedness analysis lead directly to corresponding stability results for the discrete problem, if schemes on summation-by-parts form and weak boundary conditions are used. The analysis in this paper is general and can without difficulty be extended to any coupled system of partial differential equations posed as an initial boundary value problem coupled with a numerical method on summation-by parts form with weak boundary conditions. Our ambition in this paper is to give a general roadmap for how to construct a well posed continuous problem and a stable numerical approximation, not to give exact answers to specific problems.

Unsere Produktempfehlungen

Basis-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf die Inhalte der Fachgebiete Business IT + Informatik und Management + Führung und damit auf über 30.000 Fachbücher und ca. 130 Fachzeitschriften.

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

Journal of Scientific Computing 1/2017 Zur Ausgabe

Premium Partner