Skip to main content
Erschienen in: Soft Computing 18/2017

22.06.2016 | Foundations

A robust algorithm of support vector regression with a trimmed Huber loss function in the primal

verfasst von: Chuanfa Chen, Changqing Yan, Na Zhao, Bin Guo, Guolin Liu

Erschienen in: Soft Computing | Ausgabe 18/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Support vector machine for regression (SVR) is an efficient tool for solving function estimation problem. However, it is sensitive to outliers due to its unbounded loss function. In order to reduce the effect of outliers, we propose a robust SVR with a trimmed Huber loss function (SVRT) in this paper. Synthetic and benchmark datasets were, respectively, employed to comparatively assess the performance of SVRT, and its results were compared with those of SVR, least squares SVR (LS-SVR) and a weighted LS-SVR. The numerical test shows that when training samples are subject to errors with a normal distribution, SVRT is slightly less accurate than SVR and LS-SVR, yet more accurate than the weighted LS-SVR. However, when training samples are contaminated by outliers, SVRT has a better performance than the other methods. Furthermore, SVRT is faster than the weighted LS-SVR. Simulating eight benchmark datasets shows that SVRT is averagely more accurate than the other methods when sample points are contaminated by outliers. In conclusion, SVRT can be considered as an alternative robust method for simulating contaminated sample points.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Burges CC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167CrossRef Burges CC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167CrossRef
Zurück zum Zitat Chen X, Yang J, Liang J, Ye Q (2012) Recursive robust least squares support vector regression based on maximum correntropy criterion. Neurocomputing 97:63–73CrossRef Chen X, Yang J, Liang J, Ye Q (2012) Recursive robust least squares support vector regression based on maximum correntropy criterion. Neurocomputing 97:63–73CrossRef
Zurück zum Zitat Cherkassky V, Ma Y (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 17(1):113–126CrossRefMATH Cherkassky V, Ma Y (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 17(1):113–126CrossRefMATH
Zurück zum Zitat Chuang C-C, Lee Z-J (2011) Hybrid robust support vector machines for regression with outliers. Appl Soft Comput 11(1):64–72CrossRef Chuang C-C, Lee Z-J (2011) Hybrid robust support vector machines for regression with outliers. Appl Soft Comput 11(1):64–72CrossRef
Zurück zum Zitat Chuang C-C, Su S-F, Jeng J-T, Hsiao C-C (2002) Robust support vector regression networks for function approximation with outliers. IEEE Trans Neural Netw 13(6):1322–1330CrossRef Chuang C-C, Su S-F, Jeng J-T, Hsiao C-C (2002) Robust support vector regression networks for function approximation with outliers. IEEE Trans Neural Netw 13(6):1322–1330CrossRef
Zurück zum Zitat Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297MATH Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297MATH
Zurück zum Zitat Cui W, Yan X (2009) Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR. Chemometr Intell Lab Syst 98(2):130–135CrossRef Cui W, Yan X (2009) Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR. Chemometr Intell Lab Syst 98(2):130–135CrossRef
Zurück zum Zitat Jeng J-T, Chuang C-C, Tao C-W (2010) Hybrid SVMR-GPR for modeling of chaotic time series systems with noise and outliers. Neurocomputing 73(10–12):1686–1693CrossRef Jeng J-T, Chuang C-C, Tao C-W (2010) Hybrid SVMR-GPR for modeling of chaotic time series systems with noise and outliers. Neurocomputing 73(10–12):1686–1693CrossRef
Zurück zum Zitat Liano K (1996) Robust error measure for supervised neural network learning with outliers. IEEE Trans Neural Netw 7(1):246–250CrossRef Liano K (1996) Robust error measure for supervised neural network learning with outliers. IEEE Trans Neural Netw 7(1):246–250CrossRef
Zurück zum Zitat Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66(3):247–259CrossRef Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66(3):247–259CrossRef
Zurück zum Zitat Rousseeuw P, Leroy A (2003) Robust regression and outlier detection. Wiley, New YorkMATH Rousseeuw P, Leroy A (2003) Robust regression and outlier detection. Wiley, New YorkMATH
Zurück zum Zitat Shin J, Jin Kim H, Kim Y (2011) Adaptive support vector regression for UAV flight control. Neural Netw 24(1):109–120CrossRefMATH Shin J, Jin Kim H, Kim Y (2011) Adaptive support vector regression for UAV flight control. Neural Netw 24(1):109–120CrossRefMATH
Zurück zum Zitat Suykens JAK, De Brabanter J, Lukas L, Vandewalle J (2002a) Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48(1):85–105CrossRefMATH Suykens JAK, De Brabanter J, Lukas L, Vandewalle J (2002a) Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48(1):85–105CrossRefMATH
Zurück zum Zitat Suykens JAK, Gestel TV, Brabanter JD, Moor BD, Vandewalle J (2002b) Least squares support vector machines. World Scientific, Singapore, p 294CrossRefMATH Suykens JAK, Gestel TV, Brabanter JD, Moor BD, Vandewalle J (2002b) Least squares support vector machines. World Scientific, Singapore, p 294CrossRefMATH
Zurück zum Zitat Vapnik V, Vapnik V (1998) Statistical Learning Theory, vol 2. Wiley, New YorkMATH Vapnik V, Vapnik V (1998) Statistical Learning Theory, vol 2. Wiley, New YorkMATH
Zurück zum Zitat Wang L, Jia H, Li J (2008) Training robust support vector machine with smooth Ramp loss in the primal space. Neurocomputing 71(13–15):3020–3025CrossRef Wang L, Jia H, Li J (2008) Training robust support vector machine with smooth Ramp loss in the primal space. Neurocomputing 71(13–15):3020–3025CrossRef
Zurück zum Zitat Wen W, Hao Z, Yang X (2010) Robust least squares support vector machine based on recursive outlier elimination. Soft Comput 14(11):1241–1251CrossRef Wen W, Hao Z, Yang X (2010) Robust least squares support vector machine based on recursive outlier elimination. Soft Comput 14(11):1241–1251CrossRef
Zurück zum Zitat Yang X, Tan L, He L (2014) A robust least squares support vector machine for regression and classification with noise. Neurocomputing 140:41–52CrossRef Yang X, Tan L, He L (2014) A robust least squares support vector machine for regression and classification with noise. Neurocomputing 140:41–52CrossRef
Zurück zum Zitat Yuille AL, Rangarajan A (2003) The concave-convex procedure. Neural Comput 15(4):915–936CrossRefMATH Yuille AL, Rangarajan A (2003) The concave-convex procedure. Neural Comput 15(4):915–936CrossRefMATH
Zurück zum Zitat Zhao Y, Sun J (2008) Robust support vector regression in the primal. Neural Netw 21(10):1548–1555CrossRefMATH Zhao Y, Sun J (2008) Robust support vector regression in the primal. Neural Netw 21(10):1548–1555CrossRefMATH
Zurück zum Zitat Zhao Y, Sun J (2010) Robust truncated support vector regression. Expert Syst Appl 37(7):5126–5133CrossRef Zhao Y, Sun J (2010) Robust truncated support vector regression. Expert Syst Appl 37(7):5126–5133CrossRef
Zurück zum Zitat Zhong P (2012) Training robust support vector regression with smooth non-convex loss function. Optim Methods Softw 27(6):1039–1058MathSciNetCrossRefMATH Zhong P (2012) Training robust support vector regression with smooth non-convex loss function. Optim Methods Softw 27(6):1039–1058MathSciNetCrossRefMATH
Metadaten
Titel
A robust algorithm of support vector regression with a trimmed Huber loss function in the primal
verfasst von
Chuanfa Chen
Changqing Yan
Na Zhao
Bin Guo
Guolin Liu
Publikationsdatum
22.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing / Ausgabe 18/2017
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-016-2229-4

Weitere Artikel der Ausgabe 18/2017

Soft Computing 18/2017 Zur Ausgabe