Skip to main content
Erschienen in: Microsystem Technologies 1/2016

22.01.2015 | Technical Paper

A robust and low-power 2-D thermal wind sensor based on a glass-in-silicon reflow process

verfasst von: Yan-qing Zhu, Bei Chen, Di Gao, Ming Qin, Qing-an Huang, Jian-qiu Huang

Erschienen in: Microsystem Technologies | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the design, fabrication, and characterization of a robust and low-power micro-machined two-dimensional (2-D) wind sensor based on a glass-in-silicon reflow process are presented for the first time. The four thermistors, which act simultaneously as heat sources and as temperature sensors, are placed on a low thermal conductivity glass substrate, and arranged in a Wheatstone bridge configuration supplied with constant voltage. In this self-heated mode, the total power consumption of the sensor could be reduced into the sub-milliwatt range, offering high initial sensitivity and wide measurement range, respectively. The embedded vertical silicon vias in the glass substrate are used to realize the electrical connections between the sensing elements and the electrode-pads, which are respectively placed on the front and the back surface of the chip. Then, the sensor and the external circuit are connected using the wire-bonding process through the electrode-pads on the back surface. The bonding wires at the backside is encapsulated by polyester paint, protecting the electrical connections of the sensor from the effect of the external environment. In addition, a passivation layer of nitride is deposited on the surface of the wind sensor to prevent direct exposure of the sensing elements to harsh media. The sensor was tested in a wind tunnel in constant voltage mode. Measurement results show that the thermal wind sensor can measure wind speeds up to 17.5 m/s, and the measured sensitivities of the sensor with different applied voltages (0.5, 1, 1.5 V) are, respectively 24.9, 148.3 and 440.61 mV/(m/s) at zero-flow point. The corresponding power consumption of the sensor with different voltages are respectively 4.81, 19.23 and 43.27 mW. Measurement results also show that wind direction in a full range of 360° with an err within 6° could be obtained. The proposed sensor can be used for many applications with a low power consumption and high reliability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adamec RJ, Thiel DV (2010) Self heated thermo-resistive element hot wire anemometer. IEEE Sens J 10(4):847–848CrossRef Adamec RJ, Thiel DV (2010) Self heated thermo-resistive element hot wire anemometer. IEEE Sens J 10(4):847–848CrossRef
Zurück zum Zitat Baltes H, Paul O, Brand O (1998) Micromachined thermally based CMOS microsensors. Proc IEEE 86:1660–1678CrossRef Baltes H, Paul O, Brand O (1998) Micromachined thermally based CMOS microsensors. Proc IEEE 86:1660–1678CrossRef
Zurück zum Zitat Chen J, Liu C (2003) Development and characterization of surface micromachined out-of-plane hot-wire anemometer. J Microelectromech Sys 12(6):979–988CrossRef Chen J, Liu C (2003) Development and characterization of surface micromachined out-of-plane hot-wire anemometer. J Microelectromech Sys 12(6):979–988CrossRef
Zurück zum Zitat Cubukcu AS, Zernickel E, Buerklin U, Urban GA (2010) A 2D thermal flow sensor with sub-mW power consumption. Sens Actuators A 163(2):449–456CrossRef Cubukcu AS, Zernickel E, Buerklin U, Urban GA (2010) A 2D thermal flow sensor with sub-mW power consumption. Sens Actuators A 163(2):449–456CrossRef
Zurück zum Zitat Ebefors T, Kälvesten E, Stemme G (1998) Three dimensional silicon triple-hot-wire anemometer based on polyimide joints. Proccedings of IEEE. Eleventh annual international workshop on micro electro mechanical systems. An investigation of micro structures, Heidelberg, pp 93–98 Ebefors T, Kälvesten E, Stemme G (1998) Three dimensional silicon triple-hot-wire anemometer based on polyimide joints. Proccedings of IEEE. Eleventh annual international workshop on micro electro mechanical systems. An investigation of micro structures, Heidelberg, pp 93–98
Zurück zum Zitat Gamage SK, Okulan N, Henderson HT (2000) Behavior of bulk micromachined silicon flow sensor in the negative differential resistance regime. J Micromech Microeng 10:421–429CrossRef Gamage SK, Okulan N, Henderson HT (2000) Behavior of bulk micromachined silicon flow sensor in the negative differential resistance regime. J Micromech Microeng 10:421–429CrossRef
Zurück zum Zitat Haque RM, Wise KD (2010) An intraocular pressure sensor based on a glass reflow process. In: Proccedings of the Hilton Head Workshop on Solid-State Sensors, Actuators and Microsystems. South Carolina, pp 49–52 Haque RM, Wise KD (2010) An intraocular pressure sensor based on a glass reflow process. In: Proccedings of the Hilton Head Workshop on Solid-State Sensors, Actuators and Microsystems. South Carolina, pp 49–52
Zurück zum Zitat Haque RM, Wise KD (2013) Development and characterization of surface micromachined out-of-plane hot-wire anemometer. J Microelectromech Sys 22(6):1470–1477CrossRef Haque RM, Wise KD (2013) Development and characterization of surface micromachined out-of-plane hot-wire anemometer. J Microelectromech Sys 22(6):1470–1477CrossRef
Zurück zum Zitat Haque RM, Serrano DE, Gao X, Shirazi AN, Keesara V, Ayazi F, Wise KD (2011) Hermetic packaging of resonators with vertical feedthroughs using a glass-in-silicon reflow process. In: Proccedings of The 16th International Conference on. Solid-State Sensors, Actuators and Microsystems. Beijing, pp 2303–2306 Haque RM, Serrano DE, Gao X, Shirazi AN, Keesara V, Ayazi F, Wise KD (2011) Hermetic packaging of resonators with vertical feedthroughs using a glass-in-silicon reflow process. In: Proccedings of The 16th International Conference on. Solid-State Sensors, Actuators and Microsystems. Beijing, pp 2303–2306
Zurück zum Zitat Harman GG (1993) Reliability and yield problems of wire bonding in microelectronics. International Society for Hybrid Microelectronics, New York Harman GG (1993) Reliability and yield problems of wire bonding in microelectronics. International Society for Hybrid Microelectronics, New York
Zurück zum Zitat Hsueh CH, Luttrell CR, Cui TH (2006) Thermal stress analyses of multilayered films on substrates and cantilever beams for micro sensors and actuators. J Micromech Microeng 16:2509–2515CrossRef Hsueh CH, Luttrell CR, Cui TH (2006) Thermal stress analyses of multilayered films on substrates and cantilever beams for micro sensors and actuators. J Micromech Microeng 16:2509–2515CrossRef
Zurück zum Zitat Hung S, Wong S, Fang W (2000) The development and application of microthermal sensors with a mesh-membrane supporting structure. Sens Actuators A 84:70–75CrossRef Hung S, Wong S, Fang W (2000) The development and application of microthermal sensors with a mesh-membrane supporting structure. Sens Actuators A 84:70–75CrossRef
Zurück zum Zitat Jin JY, Yoo S, Yoo BW, Kim YK (2012) Characterisation of silicon through-vias for wafer-level interconnection with glass reflows. Electron Lett 48(21):1354–1355CrossRef Jin JY, Yoo S, Yoo BW, Kim YK (2012) Characterisation of silicon through-vias for wafer-level interconnection with glass reflows. Electron Lett 48(21):1354–1355CrossRef
Zurück zum Zitat Kaltsas G, Nassiopoulou AG (1999) Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation. Sens Actuators A 76(1):133–138CrossRef Kaltsas G, Nassiopoulou AG (1999) Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation. Sens Actuators A 76(1):133–138CrossRef
Zurück zum Zitat Kim JK, Baek CW (2013) Capacitive pressure sensor with wafer-through silicon vias using SOI-Si direct wafer bonding and glass reflow technique. IEICE Electron Express 10(15):1–6MathSciNet Kim JK, Baek CW (2013) Capacitive pressure sensor with wafer-through silicon vias using SOI-Si direct wafer bonding and glass reflow technique. IEICE Electron Express 10(15):1–6MathSciNet
Zurück zum Zitat Kuo JTW, Yu L, Meng E (2012) Micromachined thermal flow sensors—A Review. Micromachines 3:550–573CrossRef Kuo JTW, Yu L, Meng E (2012) Micromachined thermal flow sensors—A Review. Micromachines 3:550–573CrossRef
Zurück zum Zitat Laconte J, Rue B, Raskin JP, Flandre D (2004) Fully CMOS-SOI compatible low-power directional flow sensor. Proccedings of IEEE sensors Conference. Austria, Vienna, pp 864–867 Laconte J, Rue B, Raskin JP, Flandre D (2004) Fully CMOS-SOI compatible low-power directional flow sensor. Proccedings of IEEE sensors Conference. Austria, Vienna, pp 864–867
Zurück zum Zitat Lacy F (2007) Investigating thin films for use as temperature sensors. In: Proccedings of the World Congress on Engineering and Computer Science 2007, San Francisco, USA, pp 441–444 Lacy F (2007) Investigating thin films for use as temperature sensors. In: Proccedings of the World Congress on Engineering and Computer Science 2007, San Francisco, USA, pp 441–444
Zurück zum Zitat Lee YT, Yeh SR, Chang YC, Fang WL (2011) Integration of silicon-via electrodes with different recording characteristics on a glass microprobe using a glass reflowing process. Biosens Bioelectron 26(12):4739–4746CrossRef Lee YT, Yeh SR, Chang YC, Fang WL (2011) Integration of silicon-via electrodes with different recording characteristics on a glass microprobe using a glass reflowing process. Biosens Bioelectron 26(12):4739–4746CrossRef
Zurück zum Zitat Li YB, Jiang ZB (2008) An overview of reliability and failure mode analysis of microelectro -mechanical systems (MEMS). Handbook of performability engineering, London, pp 953–966 Li YB, Jiang ZB (2008) An overview of reliability and failure mode analysis of microelectro -mechanical systems (MEMS). Handbook of performability engineering, London, pp 953–966
Zurück zum Zitat Lin CW, Hsu CP, Yang HA, Wei CW, Fang W (2008) Implementation of silicon-on-glass MEMS devices with embedded through-wafer silicon vias using the glass reflow process for wafer-level packaging and 3D chip integration. J Micromech Microeng 18(2):025018CrossRef Lin CW, Hsu CP, Yang HA, Wei CW, Fang W (2008) Implementation of silicon-on-glass MEMS devices with embedded through-wafer silicon vias using the glass reflow process for wafer-level packaging and 3D chip integration. J Micromech Microeng 18(2):025018CrossRef
Zurück zum Zitat Lin CW, Lee YT, Chang CW, Hsu WL, Chang YC, Fang WL (2009) Novel glass microprobe arrays for neural recording. Biosens Bioelectron 25(2):475–481CrossRef Lin CW, Lee YT, Chang CW, Hsu WL, Chang YC, Fang WL (2009) Novel glass microprobe arrays for neural recording. Biosens Bioelectron 25(2):475–481CrossRef
Zurück zum Zitat Liu JW, Shang JT, Tang JY, Huang QA (2011) Micromachining of Pyrex 7740 glass by silicon molding and vacuum anodic bonding. J Microelectromech Syst 20(4):909–915CrossRef Liu JW, Shang JT, Tang JY, Huang QA (2011) Micromachining of Pyrex 7740 glass by silicon molding and vacuum anodic bonding. J Microelectromech Syst 20(4):909–915CrossRef
Zurück zum Zitat Liu HB, Nay L, Pan SS, Miao JM, Norford LK (2013) High sensitivity, miniature, full 2D anemometer based on MEMS hot-film sensors. IEEE Sens J 13(5):1914–1920CrossRef Liu HB, Nay L, Pan SS, Miao JM, Norford LK (2013) High sensitivity, miniature, full 2D anemometer based on MEMS hot-film sensors. IEEE Sens J 13(5):1914–1920CrossRef
Zurück zum Zitat Meng E, Li PY, Tai YC (2008) A biocompatible parylene thermal flow sensing array. Sens Actuators A 144:18–28CrossRef Meng E, Li PY, Tai YC (2008) A biocompatible parylene thermal flow sensing array. Sens Actuators A 144:18–28CrossRef
Zurück zum Zitat Najafi K (2003) Micropackaging technologies for integrated microsystems: applications to MEMS and MOEMS. Proc SPIE 4979:1–19CrossRef Najafi K (2003) Micropackaging technologies for integrated microsystems: applications to MEMS and MOEMS. Proc SPIE 4979:1–19CrossRef
Zurück zum Zitat Nguyen NT (1997) Micromachined flow sensors—a review. Flow Meas Instrum 8:7–16CrossRef Nguyen NT (1997) Micromachined flow sensors—a review. Flow Meas Instrum 8:7–16CrossRef
Zurück zum Zitat Sabaté N, Gràcia I, Santander J, Cané C (2002) A test structure for the design of thermal flow sensors. In: Proccedings of IEEE International Conference on Microelectronic Test Structures. Cork, pp 107–110 Sabaté N, Gràcia I, Santander J, Cané C (2002) A test structure for the design of thermal flow sensors. In: Proccedings of IEEE International Conference on Microelectronic Test Structures. Cork, pp 107–110
Zurück zum Zitat Sabaté N, Santander J, Fonseca L, Gràcia I, Cané C (2004) Multi-range silicon micromachined flow sensor. Sens Actuators A 110(2):82–88 Sabaté N, Santander J, Fonseca L, Gràcia I, Cané C (2004) Multi-range silicon micromachined flow sensor. Sens Actuators A 110(2):82–88
Zurück zum Zitat Sadeghi MM, Peterson RL, Najafi K (2013) Air flow sensing using micro-wire-bonded hair-like hot-wire anemometry. J Micromech Microeng 23:085017CrossRef Sadeghi MM, Peterson RL, Najafi K (2013) Air flow sensing using micro-wire-bonded hair-like hot-wire anemometry. J Micromech Microeng 23:085017CrossRef
Zurück zum Zitat Schmid U (2003) Theoretical and experimental investigations of a novel hot-film anemometer for high-pressure automotive applications. IEEE Sens J 3(2):229–240CrossRef Schmid U (2003) Theoretical and experimental investigations of a novel hot-film anemometer for high-pressure automotive applications. IEEE Sens J 3(2):229–240CrossRef
Zurück zum Zitat Shen GP, Qin M, Huang QA (2010) A cross-type thermal wind sensor with self-testing function. IEEE Sens J 10(2):340–346CrossRef Shen GP, Qin M, Huang QA (2010) A cross-type thermal wind sensor with self-testing function. IEEE Sens J 10(2):340–346CrossRef
Zurück zum Zitat Van Putten AFP, Middlehoek S (1974) Integrated silicon anemometer. Electron Lett 10:425–426CrossRef Van Putten AFP, Middlehoek S (1974) Integrated silicon anemometer. Electron Lett 10:425–426CrossRef
Zurück zum Zitat Vilares R, Hunter C, Ugarte I, Aranburu I, Berganzo J, Elizalde J, Fernandez LJ (2010) Fabrication and testing of a SU-8 thermal flow sensor. Sens Actuators B 147(2):411–417CrossRef Vilares R, Hunter C, Ugarte I, Aranburu I, Berganzo J, Elizalde J, Fernandez LJ (2010) Fabrication and testing of a SU-8 thermal flow sensor. Sens Actuators B 147(2):411–417CrossRef
Zurück zum Zitat Wu J, van Vroonhoven CPL, Youngcheol C, Makinwa KAA (2011) A 25mW CMOS sensor for wind and temperature measurement. In: Proccedings of IEEE sensors Conference. Limerick, pp 1261–1264 Wu J, van Vroonhoven CPL, Youngcheol C, Makinwa KAA (2011) A 25mW CMOS sensor for wind and temperature measurement. In: Proccedings of IEEE sensors Conference. Limerick, pp 1261–1264
Zurück zum Zitat Zhu R, Liu P, Liu XD, Zhang FX, Zhou ZY (2009) A low-cost flexible hot-film sensor system for flow sensing and its application to aircraft. In: Proccedings IEEE 22nd International Conference on Micro Electro Mechanical Systems. Sorrento, pp 211–216 Zhu R, Liu P, Liu XD, Zhang FX, Zhou ZY (2009) A low-cost flexible hot-film sensor system for flow sensing and its application to aircraft. In: Proccedings IEEE 22nd International Conference on Micro Electro Mechanical Systems. Sorrento, pp 211–216
Zurück zum Zitat Zhu YQ, Chen B, Qin M, Huang QA (2014) 2-D Micromachined Thermal wind sensors—a review. IEEE Internet Things J 1(3):216–232CrossRef Zhu YQ, Chen B, Qin M, Huang QA (2014) 2-D Micromachined Thermal wind sensors—a review. IEEE Internet Things J 1(3):216–232CrossRef
Metadaten
Titel
A robust and low-power 2-D thermal wind sensor based on a glass-in-silicon reflow process
verfasst von
Yan-qing Zhu
Bei Chen
Di Gao
Ming Qin
Qing-an Huang
Jian-qiu Huang
Publikationsdatum
22.01.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 1/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2423-9

Weitere Artikel der Ausgabe 1/2016

Microsystem Technologies 1/2016 Zur Ausgabe

Neuer Inhalt