Skip to main content
Erschienen in:

21.07.2023 | Original Paper

A robust MPC design concerning on battery variables for frequency regulation and saving battery life collaborating with demand response for a multi-source integrated power system

verfasst von: Swetalina Bhuyan, Sunita Halder nee Dey, Subrata Paul

Erschienen in: Electrical Engineering | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work has taken a challenge to design a model predictive controller (MPC) for automatic load frequency control (ALFC) of two-area, wind-integrated thermal power system equipped with battery energy storage system (BESS) and demand response (DR) for frequency regulation task. Primarily, the incremental BESS model employs a new state of charge (SOC)-based strategy to regulate the power from battery for saving battery life. Then, DR, along with the SOC-based BESS, is employed in ALFC for frequency regulation. A modified state space model of MPC incorporating all BESS variables is developed and employed in ALFC of the studied power system. The performance of the designed MPC is examined for inertia issues arising from wind in the conventional two-area power system. Furthermore, the capability of BESS for frequency regulation and effect on the life of BESS with the proposed control strategy are measured through MPC-based ALFC and results are compared with system performance when integral controller in ALFC and inertia controller from wind are present. In addition to DR and BESS in ALFC, double-fed induction generator-based proportional derivative (PD) inertia controller also contributes in the power system for frequency support from wind energy section to avoid inertia issues. So, all the controllers of the test power system such as integral controller in ALFC and PD controller in wind are tuned concurrently for smooth frequency control. However, performance of MPC is tested for smooth frequency regulation by tuning PD controller gain of wind only while keeping MPC gain parameters as available in the literature. Particle swarm optimization is used to tune the integral controller gain of ALFC for the studied power system to compare the results with MPC-based ALFC. A transfer function model of wind-integrated two-area thermal power system is taken into consideration in the present study to verify the effectiveness of the battery variable concerning MPC design for ALFC collaborating with DR for smooth frequency control and provide safe battery life. Finally, results confirm the effectiveness of the designed MPC-based ALFC, collaborating with DR- and SOC-based incremental BESS through various case studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Nguyen N et al (2021) Frequency response in the presence of renewable generation: challenges and opportunities. IEEE Open Access J Power Energy 8:543–556CrossRef Nguyen N et al (2021) Frequency response in the presence of renewable generation: challenges and opportunities. IEEE Open Access J Power Energy 8:543–556CrossRef
2.
Zurück zum Zitat Mahmoud TS, Ahmed BS, Hassan MY (2019) The role of intelligent generation control algorithms in optimizing battery energy storage systems size in microgrids: a case study from Western Australia. Energy Convers Manag 15(196):1335–1352CrossRef Mahmoud TS, Ahmed BS, Hassan MY (2019) The role of intelligent generation control algorithms in optimizing battery energy storage systems size in microgrids: a case study from Western Australia. Energy Convers Manag 15(196):1335–1352CrossRef
3.
Zurück zum Zitat Tan Z, Li X, He L, Li Y, Huang J (2020) Primary frequency control with BESS considering adaptive SoC recovery. Int J Electr Power Energy Syst 1(117):105588CrossRef Tan Z, Li X, He L, Li Y, Huang J (2020) Primary frequency control with BESS considering adaptive SoC recovery. Int J Electr Power Energy Syst 1(117):105588CrossRef
4.
Zurück zum Zitat Li X, Huang Y, Huang J, Tan S, Wang M, Xu T, Cheng X (2014) Modelling and control strategy of battery energy storage system for primary frequency regulation. In: International conference on power system technology. IEEE, pp 543–549 Li X, Huang Y, Huang J, Tan S, Wang M, Xu T, Cheng X (2014) Modelling and control strategy of battery energy storage system for primary frequency regulation. In: International conference on power system technology. IEEE, pp 543–549
5.
Zurück zum Zitat Li X, Wang S (2019) Energy management and operational control methods for grid battery energy storage systems. CSEE J Power Energy Syst 7(5):1026–1040 Li X, Wang S (2019) Energy management and operational control methods for grid battery energy storage systems. CSEE J Power Energy Syst 7(5):1026–1040
6.
Zurück zum Zitat Mercier P, Cherkaoui R, Oudalov A (2009) Optimizing a battery energy storage system for frequency control application in an isolated power system. IEEE Trans Power Syst 24(3):1469–1477CrossRef Mercier P, Cherkaoui R, Oudalov A (2009) Optimizing a battery energy storage system for frequency control application in an isolated power system. IEEE Trans Power Syst 24(3):1469–1477CrossRef
7.
Zurück zum Zitat Bhuyan S, Dey SHN, Paul S (2020) Role of demand side management in automatic load frequency control. In: International conference on emerging frontiers in electrical and electronic technologies (ICEFEET). IEEE, pp 1–6 Bhuyan S, Dey SHN, Paul S (2020) Role of demand side management in automatic load frequency control. In: International conference on emerging frontiers in electrical and electronic technologies (ICEFEET). IEEE, pp 1–6
8.
Zurück zum Zitat Bhuyan S, Dey SHN, Paul S, Chaine S (2021) Analysis of frequency regulation for a hydro-thermal system with ALFC-DR model. In: 2021 1st international conference on power electronics and energy (ICPEE). IEEE, pp 1–5 Bhuyan S, Dey SHN, Paul S, Chaine S (2021) Analysis of frequency regulation for a hydro-thermal system with ALFC-DR model. In: 2021 1st international conference on power electronics and energy (ICPEE). IEEE, pp 1–5
9.
Zurück zum Zitat Bhuyan S, Halder Nee Dey S, Paul S (2022) Modified delay compensation in demand response for frequency regulation of interconnected power systems integrated with renewable energy sources. Cogent Eng 9(1):2065899CrossRef Bhuyan S, Halder Nee Dey S, Paul S (2022) Modified delay compensation in demand response for frequency regulation of interconnected power systems integrated with renewable energy sources. Cogent Eng 9(1):2065899CrossRef
10.
Zurück zum Zitat Chau TK et al (2017) Demand-side regulation provision from industrial loads integrated with solar PV panels and energy storage system for ancillary services. IEEE Trans Ind Inf 14(11):5038–5049CrossRef Chau TK et al (2017) Demand-side regulation provision from industrial loads integrated with solar PV panels and energy storage system for ancillary services. IEEE Trans Ind Inf 14(11):5038–5049CrossRef
11.
Zurück zum Zitat Shiltz DJ et al (2017) Integration of automatic generation control and demand response via a dynamic regulation market mechanism. IEEE Trans Control Syst Technol 27(2):631–646CrossRef Shiltz DJ et al (2017) Integration of automatic generation control and demand response via a dynamic regulation market mechanism. IEEE Trans Control Syst Technol 27(2):631–646CrossRef
12.
Zurück zum Zitat Zhang S, Mishra Y, Shahidehpour M (2016) Fuzzy-logic based Load Frequency Controller for wind farms augmented with energy storage systems. IEEE Trans Power Syst 31:1595–1603CrossRef Zhang S, Mishra Y, Shahidehpour M (2016) Fuzzy-logic based Load Frequency Controller for wind farms augmented with energy storage systems. IEEE Trans Power Syst 31:1595–1603CrossRef
13.
Zurück zum Zitat Han Y, Young P, Jain A, Zimmerle D (2015) Robust control for micro-grid frequency deviation reduction with attached storage system. IEEE Trans Smart Grid 6:557–565CrossRef Han Y, Young P, Jain A, Zimmerle D (2015) Robust control for micro-grid frequency deviation reduction with attached storage system. IEEE Trans Smart Grid 6:557–565CrossRef
14.
Zurück zum Zitat Bevrani H, Feizi M, Ataee S (2016) Robust frequency control in an islanded microgrid: H ∞ and μ-synthesis approaches. IEEE Trans Smart Grid 7:706–717 Bevrani H, Feizi M, Ataee S (2016) Robust frequency control in an islanded microgrid: H and μ-synthesis approaches. IEEE Trans Smart Grid 7:706–717
15.
Zurück zum Zitat Pan I, Das S (2016) Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans 62:19–29CrossRef Pan I, Das S (2016) Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans 62:19–29CrossRef
16.
Zurück zum Zitat Mi Y, Li D, Wang C, Loh P (2016) The sliding mode load frequency control for hybrid power system based on disturbance observer. Int J Electr Power Energy Syst 74:446–452CrossRef Mi Y, Li D, Wang C, Loh P (2016) The sliding mode load frequency control for hybrid power system based on disturbance observer. Int J Electr Power Energy Syst 74:446–452CrossRef
17.
Zurück zum Zitat Wang L (2009) Model predictive control system design and implementation using MATLAB®. Springer, Berlin Wang L (2009) Model predictive control system design and implementation using MATLAB®. Springer, Berlin
18.
Zurück zum Zitat Mohamed TH et al (2012) Model predictive based load frequency control design concerning wind turbines. Int J Electr Power Energy Syst 43(1):859–867CrossRef Mohamed TH et al (2012) Model predictive based load frequency control design concerning wind turbines. Int J Electr Power Energy Syst 43(1):859–867CrossRef
19.
Zurück zum Zitat Ersdal AM, Imsland L, Uhlen K (2015) Model predictive load-frequency control. IEEE Trans Power Syst 31(1):777–785CrossRef Ersdal AM, Imsland L, Uhlen K (2015) Model predictive load-frequency control. IEEE Trans Power Syst 31(1):777–785CrossRef
20.
Zurück zum Zitat Zheng Y et al (2017) A distributed model predictive control-based load frequency control scheme for multi-area interconnected power system using discrete-time Laguerre functions. ISA Trans 68:127–140CrossRef Zheng Y et al (2017) A distributed model predictive control-based load frequency control scheme for multi-area interconnected power system using discrete-time Laguerre functions. ISA Trans 68:127–140CrossRef
21.
Zurück zum Zitat Khan M, Sun H (2021) Complete provision of MPC-Based LFC by electric vehicles with inertial and droop support from DFIG-Based wind farm. IEEE Trans Power Deliv 37(2):716–726CrossRef Khan M, Sun H (2021) Complete provision of MPC-Based LFC by electric vehicles with inertial and droop support from DFIG-Based wind farm. IEEE Trans Power Deliv 37(2):716–726CrossRef
22.
Zurück zum Zitat Kayalvizhi S, Vinod Kumar DM (2017) Load frequency control of an isolated micro grid using fuzzy adaptive model predictive control. IEEE Access 5:16241–16251CrossRef Kayalvizhi S, Vinod Kumar DM (2017) Load frequency control of an isolated micro grid using fuzzy adaptive model predictive control. IEEE Access 5:16241–16251CrossRef
23.
Zurück zum Zitat Dashtdar M et al (2022) Frequency control of the islanded microgrid based on optimised model predictive control by PSO. IET Renew Power Gen 16(10):2088–2100CrossRef Dashtdar M et al (2022) Frequency control of the islanded microgrid based on optimised model predictive control by PSO. IET Renew Power Gen 16(10):2088–2100CrossRef
24.
Zurück zum Zitat Chen Z, Liu Z, Wang L (2022) A modified model predictive control method for frequency regulation of micro grids under status feedback attacks and time-delay attacks. Int J Electr Power Energy Syst 137:107713CrossRef Chen Z, Liu Z, Wang L (2022) A modified model predictive control method for frequency regulation of micro grids under status feedback attacks and time-delay attacks. Int J Electr Power Energy Syst 137:107713CrossRef
25.
Zurück zum Zitat Cao Y et al (2020) Multiscale model predictive control of battery systems for frequency regulation markets using physics-based models. J Process Control 90:46–55CrossRef Cao Y et al (2020) Multiscale model predictive control of battery systems for frequency regulation markets using physics-based models. J Process Control 90:46–55CrossRef
26.
Zurück zum Zitat Oshnoei A, Kheradmandi M, Muyeen SM (2020) Robust control scheme for distributed battery energy storage systems in load frequency control. IEEE Trans Power Syst 35(6):4781–4791CrossRef Oshnoei A, Kheradmandi M, Muyeen SM (2020) Robust control scheme for distributed battery energy storage systems in load frequency control. IEEE Trans Power Syst 35(6):4781–4791CrossRef
27.
Zurück zum Zitat Khokhar B, Singh Parmar KP (2022) A novel adaptive intelligent MPC scheme for frequency stabilization of a microgrid considering SOC control of EVs. Appl Energy 309:118423CrossRef Khokhar B, Singh Parmar KP (2022) A novel adaptive intelligent MPC scheme for frequency stabilization of a microgrid considering SOC control of EVs. Appl Energy 309:118423CrossRef
28.
Zurück zum Zitat Aditya SK, Das D (2001) Battery energy storage for load frequency control of an interconnected power system. Electr Power Syst Res 58(3):179–185CrossRef Aditya SK, Das D (2001) Battery energy storage for load frequency control of an interconnected power system. Electr Power Syst Res 58(3):179–185CrossRef
29.
Zurück zum Zitat Guzman ENS, Cañizares CA, Bhattacharya K, Sohm D (2020) Frequency regulation model of bulk power systems with energy storage. ArXiv e-prints Guzman ENS, Cañizares CA, Bhattacharya K, Sohm D (2020) Frequency regulation model of bulk power systems with energy storage. ArXiv e-prints
30.
Zurück zum Zitat Al-Hinai A, Alyammahi H, Alhelou HH (2021) coordinated intelligent frequency control incorporating battery energy storage system, minimum variable contribution of demand response, and variable load damping coefficient in isolated power systems. Energy Rep 1(7):8030–8041CrossRef Al-Hinai A, Alyammahi H, Alhelou HH (2021) coordinated intelligent frequency control incorporating battery energy storage system, minimum variable contribution of demand response, and variable load damping coefficient in isolated power systems. Energy Rep 1(7):8030–8041CrossRef
31.
Zurück zum Zitat Hosseini SA, Toulabi M, Ashouri-Zadeh A, Ranjbar AM (2022) Battery energy storage systems and demand response applied to power system frequency control. Int J Electr Power Energy Syst 1(136):107680CrossRef Hosseini SA, Toulabi M, Ashouri-Zadeh A, Ranjbar AM (2022) Battery energy storage systems and demand response applied to power system frequency control. Int J Electr Power Energy Syst 1(136):107680CrossRef
32.
Zurück zum Zitat Qays MO, Buswig Y, Hossain ML, Abu-Siada A (2020) Recent progress and future trends on state of charge estimation methods to improve battery-storage efficiency: a review. CSEE J Power Energy Syst 8:105 Qays MO, Buswig Y, Hossain ML, Abu-Siada A (2020) Recent progress and future trends on state of charge estimation methods to improve battery-storage efficiency: a review. CSEE J Power Energy Syst 8:105
33.
Zurück zum Zitat Chaine S, Tripathy M, Satpathy S (2015) NSGA-II based optimal control scheme of wind thermal power system for improvement of frequency regulation characteristics. Ain Shams Eng J 6(3):851–863CrossRef Chaine S, Tripathy M, Satpathy S (2015) NSGA-II based optimal control scheme of wind thermal power system for improvement of frequency regulation characteristics. Ain Shams Eng J 6(3):851–863CrossRef
34.
Zurück zum Zitat Chaine S, Tripathy M (2019) Performance of CSA optimized controllers of DFIGs and AGC to improve frequency regulation of a wind integrated hydrothermal power system. Alex Eng J 58(2):579–590CrossRef Chaine S, Tripathy M (2019) Performance of CSA optimized controllers of DFIGs and AGC to improve frequency regulation of a wind integrated hydrothermal power system. Alex Eng J 58(2):579–590CrossRef
35.
Zurück zum Zitat Stroe D, Yongcun F, Wen C, Chen Z, Fernandez C, Wang S, Chunmei Y (2021) Battery system modeling. Elsevier Science, Netherlands Stroe D, Yongcun F, Wen C, Chen Z, Fernandez C, Wang S, Chunmei Y (2021) Battery system modeling. Elsevier Science, Netherlands
36.
Zurück zum Zitat Mercier P, Cherkaoui R, Oudalov A (2009) Optimizing a battery energy storage system for frequency control application in an isolated power system. IEEE Trans Power System 24:1469–1477CrossRef Mercier P, Cherkaoui R, Oudalov A (2009) Optimizing a battery energy storage system for frequency control application in an isolated power system. IEEE Trans Power System 24:1469–1477CrossRef
37.
Zurück zum Zitat Knap V, Sinha R, Swierczynski M, Stroe DI, Chaudhary S (2014) Grid inertial response with Lithium-ion battery energy storage systems. In: 2014 IEEE 23rd international symposium on industrial electronics (ISIE), Istanbul, pp 1817–1822 Knap V, Sinha R, Swierczynski M, Stroe DI, Chaudhary S (2014) Grid inertial response with Lithium-ion battery energy storage systems. In: 2014 IEEE 23rd international symposium on industrial electronics (ISIE), Istanbul, pp 1817–1822
38.
Zurück zum Zitat Schwenzer M et al (2021) Review on model predictive control: An engineering perspective. Int J Adv Manuf Technol 117:1327–1349CrossRef Schwenzer M et al (2021) Review on model predictive control: An engineering perspective. Int J Adv Manuf Technol 117:1327–1349CrossRef
39.
Zurück zum Zitat Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intell 1:33–57CrossRef Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intell 1:33–57CrossRef
40.
Zurück zum Zitat Charles K, Urasaki N, Senjyu T, Elsayed Lotfy M, Liu L (2018) Robust load frequency control schemes in power system using optimized PID and model predictive controllers. Energies 11(11):3070CrossRef Charles K, Urasaki N, Senjyu T, Elsayed Lotfy M, Liu L (2018) Robust load frequency control schemes in power system using optimized PID and model predictive controllers. Energies 11(11):3070CrossRef
Metadaten
Titel
A robust MPC design concerning on battery variables for frequency regulation and saving battery life collaborating with demand response for a multi-source integrated power system
verfasst von
Swetalina Bhuyan
Sunita Halder nee Dey
Subrata Paul
Publikationsdatum
21.07.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 6/2023
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-023-01924-1