01.12.2011 | Original Article | Ausgabe 4/2011

A robust self-learning PID control system design for nonlinear systems using a particle swarm optimization algorithm
Abstract
This study presents a robust self-learning proportional-integral-derivative (RSPID) control system design for nonlinear systems. This RSPID control system comprises a self-learning PID (SPID) controller and a robust controller. The gradient descent method is utilized to derive the on-line tuning laws of SPID controller; and the \( \, H_{\infty } \, \) control technique is applied for the robust controller design so as to achieve robust tracking performance. Moreover, in order to achieve fast learning of PID controller, a particle swarm optimization (PSO) algorithm is adopted to search the optimal learning-rates of PID adaptive gains. Finally, two nonlinear systems, a two-link manipulator and a chaotic system are examined to illustrate the effectiveness of the proposed control algorithm. Simulation results show that the proposed control system can achieve favorable control performance for these nonlinear systems.