Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 5/2021

19.11.2020 | Original Article

A robust spectral clustering algorithm based on grid-partition and decision-graph

verfasst von: Lijuan Wang, Shifei Ding, Yanru Wang, Ling Ding

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spectral clustering (SC) transforms the dataset into a graph structure, and then finds the optimal subgraph by the way of graph-partition to complete the clustering. However, SC algorithm constructs the similarity matrix and feature decomposition for overall datasets, which needs high consumption. Secondly, k-means is taken at the clustering stage and it selects the initial cluster centers randomly, which leads to the unstable performance. Thirdly, SC needs prior knowledge to determine the number of clusters. To deal with these issues, we propose a robust spectral clustering algorithm based on grid-partition and decision-graph (PRSC) to reduce the amount of calculation and improve the clustering efficiency. In addition, a decision-graph method is added to identify the cluster centers quickly to improve the algorithm stability without any prior knowledge. A numerical experiments validate that PRSC algorithm can effectively improve the efficiency of SC. It can quickly obtain the stable performance without any prior knowledge.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Deng T, Ye D, Ma R et al (2020) Low-rank local tangent space embedding for subspace clustering. Inf Sci 508:1–21MathSciNetCrossRef Deng T, Ye D, Ma R et al (2020) Low-rank local tangent space embedding for subspace clustering. Inf Sci 508:1–21MathSciNetCrossRef
2.
Zurück zum Zitat Zhang Q, Zhu C, Yang L et al (2017) An incremental CFS algorithm for clustering large data in industrial internet of things. IEEE Trans Ind Inf 13(3):1193–1201CrossRef Zhang Q, Zhu C, Yang L et al (2017) An incremental CFS algorithm for clustering large data in industrial internet of things. IEEE Trans Ind Inf 13(3):1193–1201CrossRef
3.
Zurück zum Zitat Pang Y, Ye L, Li X et al (2016) Incremental learning with saliency map for moving object detection. IEEE Trans Circuits Syst Video Technol 28(3):640–651CrossRef Pang Y, Ye L, Li X et al (2016) Incremental learning with saliency map for moving object detection. IEEE Trans Circuits Syst Video Technol 28(3):640–651CrossRef
4.
Zurück zum Zitat Zhu Y, Ting K, Carman M (2016) Density-ratio based clustering for discovering clusters with varying densities. Pattern Recognit 60:983–997CrossRef Zhu Y, Ting K, Carman M (2016) Density-ratio based clustering for discovering clusters with varying densities. Pattern Recognit 60:983–997CrossRef
5.
Zurück zum Zitat MacQueen J Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297 MacQueen J Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297
6.
7.
Zurück zum Zitat Ester M, Kriegel H, Sander J et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge discovery and data mining, vol 226, p 231 Ester M, Kriegel H, Sander J et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge discovery and data mining, vol 226, p 231
8.
Zurück zum Zitat Cour T, Benezit F, Shi J (2005) Spectral segmentation with multiscale graph decomposition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR'05), vol 2, pp 1124–1131 Cour T, Benezit F, Shi J (2005) Spectral segmentation with multiscale graph decomposition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR'05), vol 2, pp 1124–1131
9.
Zurück zum Zitat Chung F, Graham F (1997) Spectral graph theory. American Mathematical Soc., Providence Chung F, Graham F (1997) Spectral graph theory. American Mathematical Soc., Providence
10.
Zurück zum Zitat Huang J, Nie F, Huang H (2013) Spectral rotation versus k-means in spectral clustering. In: Proceedings of the twenty-seventh AAAI conference on artificial intelligence Huang J, Nie F, Huang H (2013) Spectral rotation versus k-means in spectral clustering. In: Proceedings of the twenty-seventh AAAI conference on artificial intelligence
11.
Zurück zum Zitat Li Z, Nie F, Chang X et al (2018) Rank-constrained spectral clustering with flexible embedding. IEEE Trans Neural Netw Learn Syst 29(12):6073–6082MathSciNetCrossRef Li Z, Nie F, Chang X et al (2018) Rank-constrained spectral clustering with flexible embedding. IEEE Trans Neural Netw Learn Syst 29(12):6073–6082MathSciNetCrossRef
12.
Zurück zum Zitat Mehrkanoon S, Alzate C, Mall R et al (2014) Multiclass semisupervised learning based upon kernel spectral clustering. IEEE Trans Neural Netw Learn Syst 26(4):720–733MathSciNetCrossRef Mehrkanoon S, Alzate C, Mall R et al (2014) Multiclass semisupervised learning based upon kernel spectral clustering. IEEE Trans Neural Netw Learn Syst 26(4):720–733MathSciNetCrossRef
13.
Zurück zum Zitat Yang Y, Ma Z, Yang Y et al (2014) Multitask spectral clustering by exploring intertask correlation. IEEE Trans Cybern 45(5):1083–1094CrossRef Yang Y, Ma Z, Yang Y et al (2014) Multitask spectral clustering by exploring intertask correlation. IEEE Trans Cybern 45(5):1083–1094CrossRef
14.
Zurück zum Zitat Panda R, Kuanar S, Chowdhury AS (2017) Nyström approximated temporally constrained multisimilarity spectral clustering approach for movie scene detection. IEEE Trans Cybern 48(3):836–847CrossRef Panda R, Kuanar S, Chowdhury AS (2017) Nyström approximated temporally constrained multisimilarity spectral clustering approach for movie scene detection. IEEE Trans Cybern 48(3):836–847CrossRef
15.
Zurück zum Zitat Pang Y, Wang S, Yuan Y (2014) Learning regularized LDA by clustering. IEEE Trans Neural Netw Learn Syst 25(12):2191–2201CrossRef Pang Y, Wang S, Yuan Y (2014) Learning regularized LDA by clustering. IEEE Trans Neural Netw Learn Syst 25(12):2191–2201CrossRef
16.
Zurück zum Zitat Chen G, Hu J, Peng H et al (2018) A spectral clustering algorithm improved by P systems. Int J Comput Commun Control 13(5):759–771CrossRef Chen G, Hu J, Peng H et al (2018) A spectral clustering algorithm improved by P systems. Int J Comput Commun Control 13(5):759–771CrossRef
17.
Zurück zum Zitat Zelnik-Manor, L, Perona, P, Self-Tuning Spectral Clustering. In: Advances in Neural Information Processing Systems 17 (NIPS, (2004) The MITPress, December 13-18, Vancouver, British Columbia, Canada, pp 1601–1608 Zelnik-Manor, L, Perona, P, Self-Tuning Spectral Clustering. In: Advances in Neural Information Processing Systems 17 (NIPS, (2004) The MITPress, December 13-18, Vancouver, British Columbia, Canada, pp 1601–1608
18.
Zurück zum Zitat Wang L, Ding S, Jia H (2019) An improvement of spectral clustering via message passing and density sensitive similarity. IEEE Access 7:101054–101062CrossRef Wang L, Ding S, Jia H (2019) An improvement of spectral clustering via message passing and density sensitive similarity. IEEE Access 7:101054–101062CrossRef
19.
Zurück zum Zitat Wen G, Zhu Y, Cai Z et al (2018) Self-tuning clustering for high-dimensional data. World Wide Web 21(6):1563–1573CrossRef Wen G, Zhu Y, Cai Z et al (2018) Self-tuning clustering for high-dimensional data. World Wide Web 21(6):1563–1573CrossRef
20.
Zurück zum Zitat Zhang H, Cao L (2014) A spectral clustering based ensemble pruning approach. Neurocomputing 139:289–297CrossRef Zhang H, Cao L (2014) A spectral clustering based ensemble pruning approach. Neurocomputing 139:289–297CrossRef
21.
Zurück zum Zitat Cheng D, Nie F, Sun J et al (2017) A weight-adaptive Laplacian embedding for graph-based clustering. Neural Comput 29(7):1902–1918MathSciNetCrossRef Cheng D, Nie F, Sun J et al (2017) A weight-adaptive Laplacian embedding for graph-based clustering. Neural Comput 29(7):1902–1918MathSciNetCrossRef
22.
Zurück zum Zitat Hu Z, Nie F, Wang R et al (2020) Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding. Inf Fusion 55:251–259CrossRef Hu Z, Nie F, Wang R et al (2020) Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding. Inf Fusion 55:251–259CrossRef
23.
Zurück zum Zitat Pang Y, Xie J, Nie F et al (2018) Spectral clustering by joint spectral embedding and spectral rotation. IEEE Trans Cybern 50(1):247–258CrossRef Pang Y, Xie J, Nie F et al (2018) Spectral clustering by joint spectral embedding and spectral rotation. IEEE Trans Cybern 50(1):247–258CrossRef
24.
Zurück zum Zitat Tautenhain C, Nascimento M (2020) An ensemble based on a bi-objective evolutionary spectral algorithm for graph clustering. Expert Syst Appl 141:112911CrossRef Tautenhain C, Nascimento M (2020) An ensemble based on a bi-objective evolutionary spectral algorithm for graph clustering. Expert Syst Appl 141:112911CrossRef
25.
Zurück zum Zitat Liu J, Guo X, Liu Y (2020) Hyperspectral remote sensing image feature extraction based on spectral clustering and subclass discriminant analysis. Remote Sens Lett 11(2):166–175CrossRef Liu J, Guo X, Liu Y (2020) Hyperspectral remote sensing image feature extraction based on spectral clustering and subclass discriminant analysis. Remote Sens Lett 11(2):166–175CrossRef
26.
Zurück zum Zitat Allab K, Labiod L, Nadif M (2018) Simultaneous spectral data embedding and clustering. IEEE Trans Neural Netw Learn Syst 29(12):6396–6401MathSciNetCrossRef Allab K, Labiod L, Nadif M (2018) Simultaneous spectral data embedding and clustering. IEEE Trans Neural Netw Learn Syst 29(12):6396–6401MathSciNetCrossRef
27.
Zurück zum Zitat Wang Y, Duan X, Liu X et al (2018) A spectral clustering method with semantic interpretation based on axiomatic fuzzy set theory. Appl Soft Comput 64:59–74CrossRef Wang Y, Duan X, Liu X et al (2018) A spectral clustering method with semantic interpretation based on axiomatic fuzzy set theory. Appl Soft Comput 64:59–74CrossRef
28.
Zurück zum Zitat Nataliani Y, Yang M (2019) Powered Gaussian kernel spectral clustering. Neural Comput Appl 31(1):557–572CrossRef Nataliani Y, Yang M (2019) Powered Gaussian kernel spectral clustering. Neural Comput Appl 31(1):557–572CrossRef
29.
Zurück zum Zitat Zhang H, Zhang R, Nie F et al (2019) An efficient framework for unsupervised feature selection. Neurocomputing 366:194–207CrossRef Zhang H, Zhang R, Nie F et al (2019) An efficient framework for unsupervised feature selection. Neurocomputing 366:194–207CrossRef
30.
Zurück zum Zitat Ding S, Jia H, Du M et al (2018) A semi-supervised approximate spectral clustering algorithm based on HMRF model. Inf Sci 429:215–228MathSciNetCrossRef Ding S, Jia H, Du M et al (2018) A semi-supervised approximate spectral clustering algorithm based on HMRF model. Inf Sci 429:215–228MathSciNetCrossRef
31.
Zurück zum Zitat Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496CrossRef Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496CrossRef
32.
Zurück zum Zitat Xu X, Ding S, Du M et al (2018) DPCG: an efficient density peaks clustering algorithm based on grid. Int J Mach Learn Cybern 9(5):743–754CrossRef Xu X, Ding S, Du M et al (2018) DPCG: an efficient density peaks clustering algorithm based on grid. Int J Mach Learn Cybern 9(5):743–754CrossRef
33.
Zurück zum Zitat Bai L, Cheng X, Liang J et al (2017) Fast density clustering strategies based on the k-means algorithm. Pattern Recognit 71:375–386CrossRef Bai L, Cheng X, Liang J et al (2017) Fast density clustering strategies based on the k-means algorithm. Pattern Recognit 71:375–386CrossRef
34.
Zurück zum Zitat Du M, Ding S, Jia H (2016) Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowl Based Syst 99:135–145CrossRef Du M, Ding S, Jia H (2016) Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowl Based Syst 99:135–145CrossRef
35.
Zurück zum Zitat Ding S, Du M, Sun T et al (2017) An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood. Knowl Based Syst 133:294–313CrossRef Ding S, Du M, Sun T et al (2017) An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood. Knowl Based Syst 133:294–313CrossRef
36.
Zurück zum Zitat Xie J, Gao H, Xie W et al (2016) Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors. Inf Sci 354:19–40CrossRef Xie J, Gao H, Xie W et al (2016) Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors. Inf Sci 354:19–40CrossRef
37.
Zurück zum Zitat Liu R, Wang H, Yu X (2018) Shared-nearest-neighbor-based clustering by fast search and find of density peaks. Inf Sci 450:200–226MathSciNetCrossRef Liu R, Wang H, Yu X (2018) Shared-nearest-neighbor-based clustering by fast search and find of density peaks. Inf Sci 450:200–226MathSciNetCrossRef
38.
Zurück zum Zitat Xu X, Ding S, Wang L et al (2020) A robust density peaks clustering algorithm with density-sensitive similarity. Knowl Based Syst 200:1–11CrossRef Xu X, Ding S, Wang L et al (2020) A robust density peaks clustering algorithm with density-sensitive similarity. Knowl Based Syst 200:1–11CrossRef
39.
Zurück zum Zitat Xu X, Ding S, Shi Z (2018) An improved density peaks clustering algorithm with fast finding cluster centers. Knowl Based Syst 158:65–74CrossRef Xu X, Ding S, Shi Z (2018) An improved density peaks clustering algorithm with fast finding cluster centers. Knowl Based Syst 158:65–74CrossRef
40.
Zurück zum Zitat Wang M, Zuo W, Wang Y (2016) An improved density peaks-based clustering method for social circle discovery in social networks. Neurocomputing 179:219–227CrossRef Wang M, Zuo W, Wang Y (2016) An improved density peaks-based clustering method for social circle discovery in social networks. Neurocomputing 179:219–227CrossRef
41.
Zurück zum Zitat Meng H, Yuan F, Yan T et al (2019) Indoor positioning of rbf neural network based on improved fast clustering algorithm combined with LM algorithm. IEEE Access 7:5932–5945CrossRef Meng H, Yuan F, Yan T et al (2019) Indoor positioning of rbf neural network based on improved fast clustering algorithm combined with LM algorithm. IEEE Access 7:5932–5945CrossRef
42.
Zurück zum Zitat Li X, Wong K (2019) Evolutionary multiobjective clustering and its applications to patient stratification. IEEE Trans Cybern 49(5):1680–1693CrossRef Li X, Wong K (2019) Evolutionary multiobjective clustering and its applications to patient stratification. IEEE Trans Cybern 49(5):1680–1693CrossRef
43.
Zurück zum Zitat Jiang J, Yan X, Yu Z et al (2015) A Chinese expert disambiguation method based on semi-supervised graph clustering. Int J Mach Learn Cybern 6(2):197–204CrossRef Jiang J, Yan X, Yu Z et al (2015) A Chinese expert disambiguation method based on semi-supervised graph clustering. Int J Mach Learn Cybern 6(2):197–204CrossRef
Metadaten
Titel
A robust spectral clustering algorithm based on grid-partition and decision-graph
verfasst von
Lijuan Wang
Shifei Ding
Yanru Wang
Ling Ding
Publikationsdatum
19.11.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 5/2021
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-020-01231-2

Weitere Artikel der Ausgabe 5/2021

International Journal of Machine Learning and Cybernetics 5/2021 Zur Ausgabe

Neuer Inhalt