Skip to main content

2019 | OriginalPaper | Buchkapitel

A Robustness Analysis of Dynamic Boolean Models of Cellular Circuits

verfasst von : Ariel Bruner, Roded Sharan

Erschienen in: Bioinformatics Research and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With ever growing amounts of omics data, the next challenge in biological research is the interpretation of these data to gain mechanistic insights about cellular function. Dynamic models of cellular circuits that capture the activity levels of proteins and other molecules over time offer great expressive power by allowing the simulation of the effects of specific internal or external perturbations on the workings of the cell. However, the study of such models is at its infancy and no large scale analysis of the robustness of real models to changing conditions has been conducted to date. Here we provide a computational framework to study the robustness of such models using a combination of stochastic simulations and integer linear programming techniques. We apply our framework to a large collection of cellular circuits and benchmark the results against randomized models. We find that the steady states of real circuits tend to be more robust in multiple aspects compared to their randomized counterparts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The source code used for the analysis can be found at github.​com/​arielbro/​attractor_​learning, commit hash 83474950c9fc3aa61277d5535a142aad90ff7eed.
 
Literatur
1.
Zurück zum Zitat Chatr-Aryamontri, A., et al.: The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43(Database issue), D470–D478 (2015)CrossRef Chatr-Aryamontri, A., et al.: The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43(Database issue), D470–D478 (2015)CrossRef
2.
Zurück zum Zitat Silberberg, Y., Kupiec, M., Sharan, R.: A method for predicting protein-protein interaction types. PLoS ONE 9, e90904 (2014)CrossRef Silberberg, Y., Kupiec, M., Sharan, R.: A method for predicting protein-protein interaction types. PLoS ONE 9, e90904 (2014)CrossRef
3.
Zurück zum Zitat Ideker, T., et al.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(1), s233–s240 (2002)CrossRef Ideker, T., et al.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(1), s233–s240 (2002)CrossRef
4.
Zurück zum Zitat Vandin, F., Upfal, E., Raphael, B.: Algorithms for detecting significantly mutated pathways in cancer. J. Comput. Biol. 18(3), 507–522 (2011)MathSciNetCrossRef Vandin, F., Upfal, E., Raphael, B.: Algorithms for detecting significantly mutated pathways in cancer. J. Comput. Biol. 18(3), 507–522 (2011)MathSciNetCrossRef
5.
Zurück zum Zitat Cowen, L., et al.: Network propagation: a universal amplifier of genetic associations. Nat. Rev. Genet. 18(9), 551–562 (2017)CrossRef Cowen, L., et al.: Network propagation: a universal amplifier of genetic associations. Nat. Rev. Genet. 18(9), 551–562 (2017)CrossRef
6.
Zurück zum Zitat Shachar, R., et al.: A systems-level approach to mapping the telomere length maintenance gene circuitry. Mol. Syst. Biol. 4, 172 (2008)CrossRef Shachar, R., et al.: A systems-level approach to mapping the telomere length maintenance gene circuitry. Mol. Syst. Biol. 4, 172 (2008)CrossRef
7.
Zurück zum Zitat Yeger-Lotem, E., et al.: Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nat. Genet. 41(3), 316–323 (2009)CrossRef Yeger-Lotem, E., et al.: Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nat. Genet. 41(3), 316–323 (2009)CrossRef
8.
Zurück zum Zitat Huang, S., Fraenkel, E.: Integrating proteomic and transcriptional and and interactome data reveals hidden components of signaling and regulatory networks. Sci. Sig. 2(81), ra40 (2009) Huang, S., Fraenkel, E.: Integrating proteomic and transcriptional and and interactome data reveals hidden components of signaling and regulatory networks. Sci. Sig. 2(81), ra40 (2009)
9.
Zurück zum Zitat Yosef, N., et al.: Toward accurate reconstruction of functional protein networks. Mol. Syst. Biol. 5, 248 (2009)CrossRef Yosef, N., et al.: Toward accurate reconstruction of functional protein networks. Mol. Syst. Biol. 5, 248 (2009)CrossRef
10.
Zurück zum Zitat Dittrich, M., et al.: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24(13), i223–i231 (2008)CrossRef Dittrich, M., et al.: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24(13), i223–i231 (2008)CrossRef
11.
Zurück zum Zitat Said, M., et al.: Global network analysis of phenotypic effects: protein networks and toxicity modulation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101(52), 18006–18011 (2004)CrossRef Said, M., et al.: Global network analysis of phenotypic effects: protein networks and toxicity modulation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101(52), 18006–18011 (2004)CrossRef
12.
Zurück zum Zitat Jonsson, P., Bates, P.: Global topological features of cancer proteins in the human interactome. Bioinformatics 22(18), 2291–2297 (2006)CrossRef Jonsson, P., Bates, P.: Global topological features of cancer proteins in the human interactome. Bioinformatics 22(18), 2291–2297 (2006)CrossRef
13.
Zurück zum Zitat Novere, N.L.: Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet. 16(3), 146–158 (2015)CrossRef Novere, N.L.: Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet. 16(3), 146–158 (2015)CrossRef
14.
Zurück zum Zitat Morris, M., et al.: Logic-based models for the analysis of cell signaling networks. Biochemistry 49(15), 3216–3224 (2010)CrossRef Morris, M., et al.: Logic-based models for the analysis of cell signaling networks. Biochemistry 49(15), 3216–3224 (2010)CrossRef
15.
Zurück zum Zitat Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)MathSciNetCrossRef Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)MathSciNetCrossRef
16.
Zurück zum Zitat Samaga, R., et al.: The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput. Biol. 5(8), e1000438 (2009)CrossRef Samaga, R., et al.: The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput. Biol. 5(8), e1000438 (2009)CrossRef
17.
Zurück zum Zitat Oda, K., et al.: A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol. 1, 2005.0010 (2005)CrossRef Oda, K., et al.: A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol. 1, 2005.0010 (2005)CrossRef
18.
Zurück zum Zitat Grieco, L., et al.: Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput. Biol. 9(10), e1003286 (2013)CrossRef Grieco, L., et al.: Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput. Biol. 9(10), e1003286 (2013)CrossRef
19.
Zurück zum Zitat Saez-Rodriguez, J., et al.: Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 5, 331 (2009)CrossRef Saez-Rodriguez, J., et al.: Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 5, 331 (2009)CrossRef
20.
Zurück zum Zitat Mitsos, A., et al.: Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data. PLoS Comput. Biol. 5(12), e1000591 (2009)CrossRef Mitsos, A., et al.: Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data. PLoS Comput. Biol. 5(12), e1000591 (2009)CrossRef
21.
Zurück zum Zitat Moignard, V., et al.: Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33(3), 269–276 (2015)CrossRef Moignard, V., et al.: Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33(3), 269–276 (2015)CrossRef
22.
Zurück zum Zitat Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory networks with GINsim. Methods Mol. Biol. 804, 463–479 (2012)CrossRef Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory networks with GINsim. Methods Mol. Biol. 804, 463–479 (2012)CrossRef
23.
Zurück zum Zitat Qiu, Y., et al.: On control of singleton attractors in multiple Boolean networks: integer programming-based method. BMC Syst. Biol. 8(Suppl. 1), S7 (2014)CrossRef Qiu, Y., et al.: On control of singleton attractors in multiple Boolean networks: integer programming-based method. BMC Syst. Biol. 8(Suppl. 1), S7 (2014)CrossRef
24.
Zurück zum Zitat Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1393–1399 (2011)CrossRef Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1393–1399 (2011)CrossRef
25.
Zurück zum Zitat Morris, M., et al.: Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput. Biol. 7(3), e1001099 (2011)MathSciNetCrossRef Morris, M., et al.: Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput. Biol. 7(3), e1001099 (2011)MathSciNetCrossRef
26.
Zurück zum Zitat Huard, J., et al.: An integrative model links multiple inputs and signaling pathways to the onset of DNA synthesis in hepatocytes. FEBS J. 279(18), 3290–3313 (2012)CrossRef Huard, J., et al.: An integrative model links multiple inputs and signaling pathways to the onset of DNA synthesis in hepatocytes. FEBS J. 279(18), 3290–3313 (2012)CrossRef
27.
Zurück zum Zitat Dasika, M., Burgard, A., Maranas, C.: A computational framework for the topological analysis and targeted disruption of signal transduction networks. Biophys J. 91(1), 382–398 (2006)CrossRef Dasika, M., Burgard, A., Maranas, C.: A computational framework for the topological analysis and targeted disruption of signal transduction networks. Biophys J. 91(1), 382–398 (2006)CrossRef
28.
Zurück zum Zitat Vardi, L., Ruppin, E., Sharan, R.: A linearized constraint-based approach for modeling signaling networks. J. Comput. Biol. 19(2), 232–240 (2012)CrossRef Vardi, L., Ruppin, E., Sharan, R.: A linearized constraint-based approach for modeling signaling networks. J. Comput. Biol. 19(2), 232–240 (2012)CrossRef
29.
Zurück zum Zitat Gat-Viks, I., et al.: A probabilistic methodology for integrating knowledge and experiments on biological networks. J. Comput. Biol. 13(2), 165–181 (2006)MathSciNetCrossRef Gat-Viks, I., et al.: A probabilistic methodology for integrating knowledge and experiments on biological networks. J. Comput. Biol. 13(2), 165–181 (2006)MathSciNetCrossRef
30.
Zurück zum Zitat Alon, U., et al.: Robustness in bacterial chemotaxis. Nature 387, 913–917 (1997)CrossRef Alon, U., et al.: Robustness in bacterial chemotaxis. Nature 387, 913–917 (1997)CrossRef
31.
Zurück zum Zitat Li, F., et al.: The yeast cellcycle network is robustly designed. Proc. Natl. Acad. Sci. USA 101, 4781–4786 (2004)CrossRef Li, F., et al.: The yeast cellcycle network is robustly designed. Proc. Natl. Acad. Sci. USA 101, 4781–4786 (2004)CrossRef
32.
Zurück zum Zitat Aldana, M., Cluzel, P.: A natural class of robust networks. Proc. Natl. Acad. Sci. USA 100, 8710–8714 (2003)CrossRef Aldana, M., Cluzel, P.: A natural class of robust networks. Proc. Natl. Acad. Sci. USA 100, 8710–8714 (2003)CrossRef
33.
Zurück zum Zitat Fretter, C., Szejka, A., Drossel, B.: Perturbation propagation in random and evolved Boolean networks. New J. Phys. 11, 033005:1–033005:13 (2009)CrossRef Fretter, C., Szejka, A., Drossel, B.: Perturbation propagation in random and evolved Boolean networks. New J. Phys. 11, 033005:1–033005:13 (2009)CrossRef
34.
Zurück zum Zitat Sevim, V., Rikvold, P.: Chaotic gene regulatory networks can be robust against mutations and noise. J. Theor. Biol. 253, 323–332 (2008)MathSciNetCrossRef Sevim, V., Rikvold, P.: Chaotic gene regulatory networks can be robust against mutations and noise. J. Theor. Biol. 253, 323–332 (2008)MathSciNetCrossRef
35.
Zurück zum Zitat Peixoto, T.: Redundancy and error resilience in Boolean networks. Phys. Rev. Lett. 104, 048701 (2010)CrossRef Peixoto, T.: Redundancy and error resilience in Boolean networks. Phys. Rev. Lett. 104, 048701 (2010)CrossRef
36.
Zurück zum Zitat Klemm, K., Bornholdt, S.: Topology of biological networks and reliability of information processing. Proc. Natl. Acad. Sci. USA 102, 18414–18419 (2005)CrossRef Klemm, K., Bornholdt, S.: Topology of biological networks and reliability of information processing. Proc. Natl. Acad. Sci. USA 102, 18414–18419 (2005)CrossRef
37.
38.
Zurück zum Zitat Daniels, B., et al.: Criticality distinguishes the ensemble of biological regulatory networks. Phys. Rev. Lett. 121, 138102 (2018)CrossRef Daniels, B., et al.: Criticality distinguishes the ensemble of biological regulatory networks. Phys. Rev. Lett. 121, 138102 (2018)CrossRef
39.
40.
Zurück zum Zitat Ghanbarnejad, F., Klemm, K.: Impact of individual nodes in Boolean network dynamics. EPL 99, 58006 (2012)CrossRef Ghanbarnejad, F., Klemm, K.: Impact of individual nodes in Boolean network dynamics. EPL 99, 58006 (2012)CrossRef
41.
Zurück zum Zitat Helikar, T., et al.: The cell collective: toward an open and collaborative approach to systems biology. BMC Syst. Biol. 6, 96 (2012)CrossRef Helikar, T., et al.: The cell collective: toward an open and collaborative approach to systems biology. BMC Syst. Biol. 6, 96 (2012)CrossRef
Metadaten
Titel
A Robustness Analysis of Dynamic Boolean Models of Cellular Circuits
verfasst von
Ariel Bruner
Roded Sharan
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-20242-2_16