Skip to main content

2020 | OriginalPaper | Buchkapitel

A SAT-Based Approach for Mining High Utility Itemsets from Transaction Databases

verfasst von : Amel Hidouri, Said Jabbour, Badran Raddaoui, Boutheina Ben Yaghlane

Erschienen in: Big Data Analytics and Knowledge Discovery

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mining high utility itemsets is a keystone in several data analysis tasks. High Utility Itemset Mining generalizes the frequent itemset mining problem by considering item quantities and weights. A high utility itemset is a set of items that appears in the transadatabase and having a high importance to the user, measured by a utility function. The utility of a pattern can be quantified in terms of various objective criteria, e.g., profit, frequency, and weight. Constraint Programming (CP) and Propositional Satisfiability (SAT) based frameworks for modeling and solving pattern mining tasks have gained a considerable attention in recent few years. This paper introduces the first declarative framework for mining high utility itemsets from transaction databases. First, we model the problem of mining high utility itemsets from transaction databases as a propositional satifiability problem. Moreover, to facilitate the mining task, we add an additional constraint to the efficiency of our method by using weighted clique cover problem. Then, we exploit the efficient SAT solving techniques to output all the high utility itemsets in the data that satisfy a user-specified minimum support and minimum utility values. Experimental evaluations on real and synthetic datasets show that the performance of our proposed approach is close to that of the optimal case of state-of-the-art HUIM algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Chan, R., Yang, Q., Shen, Y.: Mining high utility itemsets. In: Proceedings of the IEEE Third International Conference on Data Mining, pp. 19–26, November (2003) Chan, R., Yang, Q., Shen, Y.: Mining high utility itemsets. In: Proceedings of the IEEE Third International Conference on Data Mining, pp. 19–26, November (2003)
3.
Zurück zum Zitat Ahmed, C.F., Tanbeer, S.K., Jeong, B.-S., Lee, Y.-K.: Efficient tree structures for high utility pattern mining in incremental databases. IEEE Trans. Knowl. Data Eng. 21, 1708–1721 (2009)CrossRef Ahmed, C.F., Tanbeer, S.K., Jeong, B.-S., Lee, Y.-K.: Efficient tree structures for high utility pattern mining in incremental databases. IEEE Trans. Knowl. Data Eng. 21, 1708–1721 (2009)CrossRef
6.
Zurück zum Zitat Fournier-Viger, P., Lin, J.C.-W., Vo, B., Chi, T.T., Zhang, J., Le, H.B.: A Survey of Itemset Mining. WIREs Interdisciplinary reviews - Data Mining and Knowledge Discovery, Wiley (2017) Fournier-Viger, P., Lin, J.C.-W., Vo, B., Chi, T.T., Zhang, J., Le, H.B.: A Survey of Itemset Mining. WIREs Interdisciplinary reviews - Data Mining and Knowledge Discovery, Wiley (2017)
7.
Zurück zum Zitat Chonsheng, Z., et al.: An empirical evaluation of high utility itemset mining algorithms. In: 101, pp. 91–115 (2018) Chonsheng, Z., et al.: An empirical evaluation of high utility itemset mining algorithms. In: 101, pp. 91–115 (2018)
8.
Zurück zum Zitat Guns, T., Nijssen, S., Raedt, L.D.: Itemset mining: a constraint programming perspective. Artif. Intell. 175, 1951–1983 (2011)MathSciNetCrossRef Guns, T., Nijssen, S., Raedt, L.D.: Itemset mining: a constraint programming perspective. Artif. Intell. 175, 1951–1983 (2011)MathSciNetCrossRef
9.
Zurück zum Zitat Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: ACM SIGKDD, pp. 204–212 (2008) Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: ACM SIGKDD, pp. 204–212 (2008)
10.
Zurück zum Zitat Coquery, E., Jabbour, S., Sais, L., Salhi, Y.: A SAT-based approach for discovering frequent, closed and maximal patterns in a sequence. In: Proceedings of ECAI, pp. 258–263 (2012) Coquery, E., Jabbour, S., Sais, L., Salhi, Y.: A SAT-based approach for discovering frequent, closed and maximal patterns in a sequence. In: Proceedings of ECAI, pp. 258–263 (2012)
13.
Zurück zum Zitat Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu, P.S.: Efficient algorithms for mining high utility itemsets from transaction databases. IEEE Trans. Knowl. Data Eng. 25(8), 1772–1786 (2013)CrossRef Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu, P.S.: Efficient algorithms for mining high utility itemsets from transaction databases. IEEE Trans. Knowl. Data Eng. 25(8), 1772–1786 (2013)CrossRef
14.
Zurück zum Zitat Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, p. 5564 (2012) Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, p. 5564 (2012)
15.
Zurück zum Zitat Krishnamoorthy, S.: Pruning strategies for mining high utility itemsets. Expert Syst. Appl. 42(5), 2371–2381 (2015)CrossRef Krishnamoorthy, S.: Pruning strategies for mining high utility itemsets. Expert Syst. Appl. 42(5), 2371–2381 (2015)CrossRef
16.
Zurück zum Zitat Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Proceedings of the 21st International Symposium on Methodologies for Intelligent System, p. 8392 (2014) Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Proceedings of the 21st International Symposium on Methodologies for Intelligent System, p. 8392 (2014)
17.
Zurück zum Zitat Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., V.S. Tseng: EFIM: A Highly Ecient Algorithm for High-Utility Itemset Mining Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., V.S. Tseng: EFIM: A Highly Ecient Algorithm for High-Utility Itemset Mining
20.
Zurück zum Zitat Tseitin, G.: On the complexity of derivations in the propositional calculus. In: Structures in Constructives Mathematics and Mathematical Logic, Part II, pp. 115–125 (1968) Tseitin, G.: On the complexity of derivations in the propositional calculus. In: Structures in Constructives Mathematics and Mathematical Logic, Part II, pp. 115–125 (1968)
21.
Zurück zum Zitat Hsu, W.-L., Nemhauser, G.L.: A polynomial algorithm for the minimum weighted clique cover problem on claw-free perfect graphs. Discrete Math. 38(1), 65–71 (1982)MathSciNetCrossRef Hsu, W.-L., Nemhauser, G.L.: A polynomial algorithm for the minimum weighted clique cover problem on claw-free perfect graphs. Discrete Math. 38(1), 65–71 (1982)MathSciNetCrossRef
24.
Zurück zum Zitat Boudane, A., Jabbour, S., Sais, L., Salhi, Y.: A SAT-based approach for mining association rules. In: Proceedings of IJCAI, pp. 2472–2478 (2016) Boudane, A., Jabbour, S., Sais, L., Salhi, Y.: A SAT-based approach for mining association rules. In: Proceedings of IJCAI, pp. 2472–2478 (2016)
26.
Zurück zum Zitat Cheng, J., Ke, Y., Ada Wai-Chee, F., Yu, J.X., Zhu, L.: Finding maximal cliques in massive networks. ACM Trans. Database Syst. 36, 4 (2011)CrossRef Cheng, J., Ke, Y., Ada Wai-Chee, F., Yu, J.X., Zhu, L.: Finding maximal cliques in massive networks. ACM Trans. Database Syst. 36, 4 (2011)CrossRef
27.
Zurück zum Zitat Eblen, J.D., Phillips, C.A., Rogers, G.L., et al.: The maximum clique enumeration problem: algorithms, applications, and implementations. BMC Bioinform. 13, S5 (2012)CrossRef Eblen, J.D., Phillips, C.A., Rogers, G.L., et al.: The maximum clique enumeration problem: algorithms, applications, and implementations. BMC Bioinform. 13, S5 (2012)CrossRef
28.
Zurück zum Zitat Jabbour, S., et al.: Boolean satisfiability for sequence mining. In: Proceedings of CIKM 2013, pp. 649–658 (2013) Jabbour, S., et al.: Boolean satisfiability for sequence mining. In: Proceedings of CIKM 2013, pp. 649–658 (2013)
30.
Zurück zum Zitat Sörensson, N.E.: An Extensible SAT-solver. In: Proceedings of SAT, pp. 502–518 (2003) Sörensson, N.E.: An Extensible SAT-solver. In: Proceedings of SAT, pp. 502–518 (2003)
Metadaten
Titel
A SAT-Based Approach for Mining High Utility Itemsets from Transaction Databases
verfasst von
Amel Hidouri
Said Jabbour
Badran Raddaoui
Boutheina Ben Yaghlane
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-59065-9_8