Skip to main content
Erschienen in: The Journal of Supercomputing 3/2021

07.07.2020

A scalable parallel algorithm for direct-forcing immersed boundary method for multiphase flow simulation on spectral elements

verfasst von: Yunchao Yang, S. Balachandar

Erschienen in: The Journal of Supercomputing | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we propose a highly scalable parallel double binned ghost particle (DBGP) algorithm for direct-forcing immersed boundary spectral element method for multiphase flow simulations. In particular, the DBGP algorithm is designed to obtain fully distributed data storage and scalable data transfer across hundreds of thousands of processors. The proposed algorithm uses a queen and worker data structure for fully resolved particles to demarcate particle-level and marker-level quantities and communication. In the DBGP algorithm, each particle’s centroid is represented by a queen marker and the particle surface is covered with a uniform distribution of surface worker markers. The queen marker contains information on the translational and rotational motion of a particle and integrates the force and torque computed at all the worker markers, while the worker marker implements the fluid–particle interaction. Ghost queen and ghost worker markers are generated for each real queen and real worker marker during computation for particle-level and marker-level communications, respectively. A double Cartesian binning process is introduced that divides the physical domain into a coarse queen-bin and a fine worker-bin structure in three dimensions. The queen-bin and worker-bin sizes are determined by their zone of influence at the particle-level and marker-level communication, respectively. Bin-to-rank maps that relate each queen-bin and worker-bin to all the MPI ranks that they interact with are created. By using the queen/worker marker representation and two-layer bin-to-rank maps, data communication across very large number of MPI ranks is efficiently carried out. A scaling analysis has been conducted, showing excellent performance of the DBGP algorithm for up to 16,384 MPI ranks in both weak and strong scaling studies. The proposed method has been demonstrated to accurately predict sedimentation of particle clouds. The simulated correlation between the mean settling velocity and volume fraction is in good agreement with empirical correlations from previous studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akiki G, Balachandar S (2016) Immersed boundary method with non-uniform distribution of Lagrangian markers for a non-uniform Eulerian mesh. J Comput Phys 307:34–59MathSciNetCrossRef Akiki G, Balachandar S (2016) Immersed boundary method with non-uniform distribution of Lagrangian markers for a non-uniform Eulerian mesh. J Comput Phys 307:34–59MathSciNetCrossRef
2.
Zurück zum Zitat Akiki G, Moore W, Balachandar S (2017) Pairwise-interaction extended point-particle model for particle-laden flows. J Comput Phys 351:329–357MathSciNetCrossRef Akiki G, Moore W, Balachandar S (2017) Pairwise-interaction extended point-particle model for particle-laden flows. J Comput Phys 351:329–357MathSciNetCrossRef
3.
Zurück zum Zitat Bagchi P, Balachandar S (2002) Shear versus vortex-induced lift force on a rigid sphere at moderate Re. J Fluid Mech 473:379–388MathSciNetCrossRef Bagchi P, Balachandar S (2002) Shear versus vortex-induced lift force on a rigid sphere at moderate Re. J Fluid Mech 473:379–388MathSciNetCrossRef
4.
Zurück zum Zitat Balachandar S, Eaton JK (2010) Turbulent dispersed multiphase flow. Annu Rev Fluid Mech 42:111–133CrossRef Balachandar S, Eaton JK (2010) Turbulent dispersed multiphase flow. Annu Rev Fluid Mech 42:111–133CrossRef
6.
Zurück zum Zitat Breugem WP (2012) A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J Comput Phys 231(13):4469–4498MathSciNetCrossRef Breugem WP (2012) A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J Comput Phys 231(13):4469–4498MathSciNetCrossRef
7.
Zurück zum Zitat Capecelatro J, Desjardins O (2013) An Euler–Lagrange strategy for simulating particle-laden flows. J Comput Phys 238:1–31MathSciNetCrossRef Capecelatro J, Desjardins O (2013) An Euler–Lagrange strategy for simulating particle-laden flows. J Comput Phys 238:1–31MathSciNetCrossRef
9.
Zurück zum Zitat Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65CrossRef Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65CrossRef
10.
Zurück zum Zitat Deville MO, Fischer PF, Mund EH (2002) High-order methods for incompressible fluid flow, vol 9. Cambridge University Press, CambridgeCrossRef Deville MO, Fischer PF, Mund EH (2002) High-order methods for incompressible fluid flow, vol 9. Cambridge University Press, CambridgeCrossRef
11.
Zurück zum Zitat Fischer P, Kruse J, Mullen J, Tufo H, Lottes J, Kerkemeier S (2008) Nek5000: Open source spectral element CFD solver. Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, see https://nek5000.mcs.anl.gov/. Accessed 25 May 2020 Fischer P, Kruse J, Mullen J, Tufo H, Lottes J, Kerkemeier S (2008) Nek5000: Open source spectral element CFD solver. Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, see https://​nek5000.​mcs.​anl.​gov/​. Accessed 25 May 2020
12.
Zurück zum Zitat Fornberg B (1980) A numerical study of steady viscous flow past a circular cylinder. J Fluid Mech 98(4):819–855CrossRef Fornberg B (1980) A numerical study of steady viscous flow past a circular cylinder. J Fluid Mech 98(4):819–855CrossRef
13.
Zurück zum Zitat Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiph Flow 25(5):755–794MathSciNetCrossRef Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiph Flow 25(5):755–794MathSciNetCrossRef
14.
Zurück zum Zitat Gottlieb S, Shu CW (1998) Total variation diminishing Runge–Kutta schemes. Math Comput Am Math Soc 67(221):73–85MathSciNetCrossRef Gottlieb S, Shu CW (1998) Total variation diminishing Runge–Kutta schemes. Math Comput Am Math Soc 67(221):73–85MathSciNetCrossRef
15.
Zurück zum Zitat He L, Tafti DK, Nagendra K (2017) Evaluation of drag correlations using particle resolved simulations of spheres and ellipsoids in assembly. Powder Technol 313:332–343CrossRef He L, Tafti DK, Nagendra K (2017) Evaluation of drag correlations using particle resolved simulations of spheres and ellipsoids in assembly. Powder Technol 313:332–343CrossRef
16.
Zurück zum Zitat Johnson T, Patel V (1999) Flow past a sphere up to a Reynolds number of 300. J Fluid Mech 378:19–70CrossRef Johnson T, Patel V (1999) Flow past a sphere up to a Reynolds number of 300. J Fluid Mech 378:19–70CrossRef
17.
Zurück zum Zitat Kempe T, Fröhlich J (2012) An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J Comput Phys 231(9):3663–3684MathSciNetCrossRef Kempe T, Fröhlich J (2012) An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J Comput Phys 231(9):3663–3684MathSciNetCrossRef
18.
Zurück zum Zitat Mazzuoli M, Blondeaux P, Vittori G, Uhlmann M, Simeonov J, Calantoni J (2020) Interface-resolved direct numerical simulations of sediment transport in a turbulent oscillatory boundary layer. J Fluid Mech 885:A28CrossRef Mazzuoli M, Blondeaux P, Vittori G, Uhlmann M, Simeonov J, Calantoni J (2020) Interface-resolved direct numerical simulations of sediment transport in a turbulent oscillatory boundary layer. J Fluid Mech 885:A28CrossRef
19.
Zurück zum Zitat Mohd-Yusof J (1997) Combined immersed-boundary/b-spline methods for simulations of flow in complex geometries. Annual Research Briefs. NASA Ames Research Center-Stanford University Center of Turbulence Research: Stanford pp 317–327 Mohd-Yusof J (1997) Combined immersed-boundary/b-spline methods for simulations of flow in complex geometries. Annual Research Briefs. NASA Ames Research Center-Stanford University Center of Turbulence Research: Stanford pp 317–327
20.
Zurück zum Zitat Mordant N, Pinton JF (2000) Velocity measurement of a settling sphere. Eur Phys J B Condens Matter Complex Syst 18(2):343–352CrossRef Mordant N, Pinton JF (2000) Velocity measurement of a settling sphere. Eur Phys J B Condens Matter Complex Syst 18(2):343–352CrossRef
21.
Zurück zum Zitat Nagendra K, Tafti DK, Viswanath K (2014) A new approach for conjugate heat transfer problems using immersed boundary method for curvilinear grid based solvers. J Comput Phys 267:225–246MathSciNetCrossRef Nagendra K, Tafti DK, Viswanath K (2014) A new approach for conjugate heat transfer problems using immersed boundary method for curvilinear grid based solvers. J Comput Phys 267:225–246MathSciNetCrossRef
22.
Zurück zum Zitat Navarro HA, de Souza Braun MP (2013) Determination of the normal spring stiffness coefficient in the linear spring-dashpot contact model of discrete element method. Powder Technol 246:707–722CrossRef Navarro HA, de Souza Braun MP (2013) Determination of the normal spring stiffness coefficient in the linear spring-dashpot contact model of discrete element method. Powder Technol 246:707–722CrossRef
23.
Zurück zum Zitat Offermans N, Marin O, Schanen M, Gong J, Fischer P, Schlatter P, Obabko A, Peplinski A, Hutchinson M, Merzari E (2016) On the strong scaling of the spectral element solver nek5000 on petascale systems. In: Proceedings of the Exascale Applications and Software Conference 2016. ACM, p 5 Offermans N, Marin O, Schanen M, Gong J, Fischer P, Schlatter P, Obabko A, Peplinski A, Hutchinson M, Merzari E (2016) On the strong scaling of the spectral element solver nek5000 on petascale systems. In: Proceedings of the Exascale Applications and Software Conference 2016. ACM, p 5
24.
Zurück zum Zitat Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54(3):468–488CrossRef Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54(3):468–488CrossRef
26.
Zurück zum Zitat Pinelli A, Naqavi I, Piomelli U, Favier J (2010) Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers. J Comput Phys 229(24):9073–9091MathSciNetCrossRef Pinelli A, Naqavi I, Piomelli U, Favier J (2010) Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers. J Comput Phys 229(24):9073–9091MathSciNetCrossRef
27.
Zurück zum Zitat Richardson J, Zaki W (1954) This week’s citation classic. Trans Inst Chem Eng 32:35–53 Richardson J, Zaki W (1954) This week’s citation classic. Trans Inst Chem Eng 32:35–53
28.
Zurück zum Zitat Roma AM, Peskin CS, Berger MJ (1999) An adaptive version of the immersed boundary method. J Comput Phys 153(2):509–534MathSciNetCrossRef Roma AM, Peskin CS, Berger MJ (1999) An adaptive version of the immersed boundary method. J Comput Phys 153(2):509–534MathSciNetCrossRef
30.
Zurück zum Zitat Schiller L, Naumann A (1933) Über die grundlegenden berechnungen bei der schwerkraftaufbereitung. Z Ver Dtsch Ing 77:318–320 Schiller L, Naumann A (1933) Über die grundlegenden berechnungen bei der schwerkraftaufbereitung. Z Ver Dtsch Ing 77:318–320
31.
Zurück zum Zitat Sharma N, Patankar NA (2005) A fast computation technique for the direct numerical simulation of rigid particulate flows. J Comput Phys 205(2):439–457CrossRef Sharma N, Patankar NA (2005) A fast computation technique for the direct numerical simulation of rigid particulate flows. J Comput Phys 205(2):439–457CrossRef
32.
Zurück zum Zitat Taneda S (1956) Experimental investigation of the wake behind a sphere at low Reynolds numbers. J Phys Soc Jpn 11(10):1104–1108CrossRef Taneda S (1956) Experimental investigation of the wake behind a sphere at low Reynolds numbers. J Phys Soc Jpn 11(10):1104–1108CrossRef
33.
Zurück zum Zitat Tenneti S, Garg R, Subramaniam S (2011) Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Int J Multiph Flow 37(9):1072–1092CrossRef Tenneti S, Garg R, Subramaniam S (2011) Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Int J Multiph Flow 37(9):1072–1092CrossRef
34.
Zurück zum Zitat Tenneti S, Subramaniam S (2014) Particle-resolved direct numerical simulation for gas-solid flow model development. Annu Rev Fluid Mech 46:199–230MathSciNetCrossRef Tenneti S, Subramaniam S (2014) Particle-resolved direct numerical simulation for gas-solid flow model development. Annu Rev Fluid Mech 46:199–230MathSciNetCrossRef
35.
Zurück zum Zitat Tufo HM, Fischer PF (2001) Fast parallel direct solvers for coarse grid problems. J Parallel Distrib Comput 61(2):151–177CrossRef Tufo HM, Fischer PF (2001) Fast parallel direct solvers for coarse grid problems. J Parallel Distrib Comput 61(2):151–177CrossRef
36.
Zurück zum Zitat Uhlmann M (2004) Simulation of particulate flows on multi-processor machines with distributed memory, Technical report. Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT) Uhlmann M (2004) Simulation of particulate flows on multi-processor machines with distributed memory, Technical report. Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT)
37.
Zurück zum Zitat Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476MathSciNetCrossRef Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476MathSciNetCrossRef
38.
Zurück zum Zitat van der Hoef MA, Ye M, van Sint Annaland M, Andrews A, Sundaresan S, Kuipers J (2006) Multiscale modeling of gas-fluidized beds. Adv Chem Eng 31:65–149CrossRef van der Hoef MA, Ye M, van Sint Annaland M, Andrews A, Sundaresan S, Kuipers J (2006) Multiscale modeling of gas-fluidized beds. Adv Chem Eng 31:65–149CrossRef
39.
Zurück zum Zitat Valero-Lara P (2014) Accelerating solid–fluid interaction based on the immersed boundary method on multicore and GPU architectures. J Supercomput 70(2):799–815CrossRef Valero-Lara P (2014) Accelerating solid–fluid interaction based on the immersed boundary method on multicore and GPU architectures. J Supercomput 70(2):799–815CrossRef
40.
Zurück zum Zitat Wang S, He G, Zhang X (2013) Parallel computing strategy for a flow solver based on immersed boundary method and discrete stream-function formulation. Comput Fluids 88:210–224MathSciNetCrossRef Wang S, He G, Zhang X (2013) Parallel computing strategy for a flow solver based on immersed boundary method and discrete stream-function formulation. Comput Fluids 88:210–224MathSciNetCrossRef
41.
Zurück zum Zitat Wang Z, Fan J, Luo K (2008) Parallel computing strategy for the simulation of particulate flows with immersed boundary method. Sci China Ser E Technol Sci 51(8):1169–1176MathSciNetCrossRef Wang Z, Fan J, Luo K (2008) Parallel computing strategy for the simulation of particulate flows with immersed boundary method. Sci China Ser E Technol Sci 51(8):1169–1176MathSciNetCrossRef
42.
Zurück zum Zitat Yin X, Koch DL (2007) Hindered settling velocity and microstructure in suspensions of solid spheres with moderate reynolds numbers. Phys Fluids 19(9):093302CrossRef Yin X, Koch DL (2007) Hindered settling velocity and microstructure in suspensions of solid spheres with moderate reynolds numbers. Phys Fluids 19(9):093302CrossRef
43.
Zurück zum Zitat Yu Z, Lin Z, Shao X, Wang LP (2016) A parallel fictitious domain method for the interface-resolved simulation of particle-laden flows and its application to the turbulent channel flow. Eng Appl Comput Fluid Mech 10(1):160–170 Yu Z, Lin Z, Shao X, Wang LP (2016) A parallel fictitious domain method for the interface-resolved simulation of particle-laden flows and its application to the turbulent channel flow. Eng Appl Comput Fluid Mech 10(1):160–170
Metadaten
Titel
A scalable parallel algorithm for direct-forcing immersed boundary method for multiphase flow simulation on spectral elements
verfasst von
Yunchao Yang
S. Balachandar
Publikationsdatum
07.07.2020
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 3/2021
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-020-03371-2

Weitere Artikel der Ausgabe 3/2021

The Journal of Supercomputing 3/2021 Zur Ausgabe