Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2016

Open Access 01.12.2016 | Research

A scaled three-term conjugate gradient method for unconstrained optimization

verfasst von: Ibrahim Arzuka, Mohd R Abu Bakar, Wah June Leong

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2016

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conjugate gradient methods play an important role in many fields of application due to their simplicity, low memory requirements, and global convergence properties. In this paper, we propose an efficient three-term conjugate gradient method by utilizing the DFP update for the inverse Hessian approximation which satisfies both the sufficient descent and the conjugacy conditions. The basic philosophy is that the DFP update is restarted with a multiple of the identity matrix in every iteration. An acceleration scheme is incorporated in the proposed method to enhance the reduction in function value. Numerical results from an implementation of the proposed method on some standard unconstrained optimization problem show that the proposed method is promising and exhibits a superior numerical performance in comparison with other well-known conjugate gradient methods.
Hinweise

Competing interests

We hereby declare that there are no competing interests with regard to the manuscript.

Authors’ contributions

We all participated in the establishment of the basic concepts, the convergence properties of the proposed method and in the experimental result in comparison of the proposed method with order existing methods.

1 Introduction

In this paper, we are interested in solving nonlinear large scale unconstrained optimization problems of the form
$$ \min f(x), \quad x\in\Re^{n}, $$
(1)
where \(f:\Re^{n}\rightarrow\Re\) is an at least twice continuously differentiable function. A nonlinear conjugate gradient method is an iterative scheme that generates a sequence \(\{x_{k}\}\) of an approximation to the solution of (1), using the recurrence
$$ x_{k+1}=x_{k}+\alpha_{k} d_{k} , \quad k=0,1,2,3,\ldots, $$
(2)
where \(\alpha_{k}>0\) is the steplength determined by a line search strategy which either minimizes the function or reduces it sufficiently along the search direction and \(d_{k}\) is the search direction defined by
$$d_{k}= \textstyle\begin{cases} -g_{k}; & k=0, \\ -g_{k} +\beta_{k} d_{k-1}; & k\geq1, \end{cases} $$
where \(g_{k}\) is the gradient of f at a point \(x_{k}\) and \(\beta_{k}\) is a scalar known as the conjugate gradient parameter. For example, Fletcher and Reeves (FR) [1], Polak-Ribiere-Polyak (PRP) [2], Liu and Storey (LS) [3], Hestenes and Stiefel (HS) [4], Dai and Yuan (DY) [5] and Fletcher (CD) [6] used an update parameter, respectively, given by
$$\begin{aligned} & \beta^{\mathrm{FR}}_{k}=\frac{g_{k}^{T}g_{k}}{g_{k-1}^{T}g_{k-1}}, \qquad \beta^{\mathrm{PRP}}_{k}=\frac{g_{k}^{T}y_{k-1}}{g_{k-1}^{T}g_{k-1}}, \qquad \beta^{\mathrm{LS}}_{k}=\frac{-g_{k}^{T}y_{k-1}}{d_{k-1}^{T}g_{k-1}}, \\ & \beta^{\mathrm{HS}}_{k}=\frac{g_{k}^{T}y_{k-1}}{d_{k-1}^{T}y_{k-1}}, \qquad \beta^{\mathrm{DY}}_{k}=\frac{g_{k}^{T}g_{k}}{d_{k-1}^{T}y_{k-1}}, \qquad \beta^{\mathrm{CD}}_{k}=-\frac{g_{k}^{T}g_{k}}{d_{k-1}^{T}y_{k-1}}, \end{aligned}$$
where \(y_{k-1}=g_{k}-g_{k-1}\). If the objective function is quadratic, with an exact line search the performances of these methods are equivalent. For a nonlinear objective function different \(\beta_{k}\) lead to a different performance in practice. Over the years, after the practical convergence result of Al-Baali [7] and later of Gilbert and Nocedal [8] attention of researchers has been on developing on conjugate gradient methods that possesses the sufficient descent condition
$$ g_{k}^{T} d_{k}\leq-c\Vert g_{k}\Vert ^{2}, $$
(3)
for some constant \(c> 0\). For instance the CG-DESCENT of Hager and Zhang [9]
$$ \beta^{\mathrm{HZ}}_{k}=\max \bigl\{ \beta^{N}_{k},\eta_{k} \bigr\} , $$
(4)
where
$$\beta^{N}_{k}=\frac{1}{d^{T}_{k-1}y_{k-1}} \biggl(y_{k-1}-2d_{k-1} \frac {\Vert y_{k-1}\Vert ^{2}}{d^{T}_{k-1}y_{k-1}} \biggr)^{T} g_{k} $$
and
$$\eta_{k}=\frac{-1}{\Vert d_{k-1}\Vert \min \{\Vert g_{k-1}\Vert ,\eta \}}, $$
which is based on the modification of HS method. Another important class of conjugate gradient methods is the so-called three-term conjugate gradient method in which the search direction is determined as a linear combination of \(g_{k}\), \(s_{k}\), and \(y_{k}\) as
$$ d_{k}=-g_{k} -\tau_{1} s_{k}+ \tau_{2} y_{k}, $$
(5)
where \(\tau_{1}\) and \(\tau_{2}\) are scalar. Among the generated three-term conjugate gradient methods in the literature we have the three-term conjugate methods proposed by Zhang et al. [10, 11] by considering a descent modified PRP and also a descent modified HS conjugate gradient method as
$$d_{k+1}=-g_{k+1}+ \biggl(\frac{g_{k+1}^{T}y_{k}}{g_{k}^{T}g_{k}} \biggr)d_{k}- \biggl(\frac{g_{k+1}^{T} d_{k}}{g_{k}^{T}g_{k}} \biggr)y_{k} , $$
and
$$d_{k+1}=-g_{k+1}+ \biggl(\frac{g_{k+1}^{T}y_{k}}{s_{k}^{T}y_{k}} \biggr)s_{k}- \biggl(\frac{g_{k+1}^{T}s_{k}}{s_{k}^{T}y_{k}} \biggr)y_{k}, $$
where \(s_{k}=x_{k+1}-x_{k}\). An attractive property of these methods is that at each iteration, the search direction satisfies the descent condition, namely \(g_{k}^{T} d_{k}= -c\Vert g_{k}\Vert ^{2}\) for some constant \(c> 0\). In the same manner, Andrei [12] considers the development of a three-term conjugate gradient method from the BFGS updating scheme of the inverse Hessian approximation restarted as an identity matrix at every iteration where the search direction is given by
$$d_{k+1}=-g_{k+1}+\frac{y^{T}_{k} g_{k+1}}{y_{k}^{T}s_{k}}- \biggl(y-2 \frac{\Vert y_{k}\Vert ^{2}}{y_{k}^{T}s_{k}} \biggr)^{T}\frac{s_{k}^{T} g_{k+1}}{y_{k}^{T}s_{k}}s_{k}- \biggl(\frac{s_{k}^{T} g_{k+1}}{y_{k}^{T}s_{k}} \biggr)y_{k}. $$
An interesting feature of this method is that both the sufficient and the conjugacy conditions are satisfied and we have global convergence for a uniformly convex function. Motivated by the good performance of the three-term conjugate gradient method, we are interested in developing a three-term conjugate gradient method which satisfies both the sufficient descent condition, the conjugacy condition, and global convergence. The remaining part of this paper is structured as follows: Section 2 deals with the derivation of the proposed method. In Section 3, we present the global convergence properties. The numerical results and discussion are reported in Section 4. Finally, a concluding remark is given in the last section.

2 Conjugate gradient method via memoryless quasi-Newton method

In this section, we describe the proposed method which would satisfied both the sufficient descent and the conjugacy conditions. Let us consider the DFP method, which is a quasi-Newton method belonging to the Broyden class [13]. The search direction in the quasi-Newton methods is given by
$$ d_{k}=-H_{k}g_{k}, $$
(6)
where \(H_{k}\) is the inverse Hessian approximation updated by the Broyden class. This class consists of several updating schemes, the most famous being the BFGS and the DFP; if \(H_{k}\) is updated by the DFP then
$$ H_{k+1}=H_{k} + \frac{s_{k}s_{k}^{T}}{s_{k}^{T}y_{k}}- \frac{H_{k} y_{k} y_{k}^{T} H_{k}}{y_{k}^{T}H_{k} y_{k}}, $$
(7)
such that the secant equation
$$ H_{k+1}y_{k}=s_{k} $$
(8)
is satisfied. This method is also known as a variable metric method, developed by Davidon [14], Fletcher and Powell [15]. A remarkable property of this method is that it is a conjugate direction method and one of the best quasi-Newton methods that encompassed the advantage of both the Newton method and the steepest descent method, while avoiding their shortcomings [16]. Memoryless quasi-Newton methods are other techniques for solving (1), where at every step the inverse Hessian approximation is updated as an identity matrix. Thus, the search direction can be determined without requiring the storage of any matrix. It was proposed by Shanno [17] and Perry [18]. The classical conjugate gradient methods PRP [2] and FR [1] can be seen as memoryless BFGS (see Shanno [17]). We proposed our three-term conjugate gradient method by incorporating the DFP updating scheme of the inverse Hessian approximation (7), within the frame of a memoryless quasi-Newton method where at each iteration the inverse Hessian approximation is restarted as a multiple of the identity matrix with a positive scaling parameter as
$$ Q_{k+1}=\mu_{k} I + \frac{s_{k}s_{k}^{T}}{s_{k}^{T}y_{k}}- \mu_{k} \frac{y_{k} y_{k}^{T} }{y_{k}^{T} y_{k}}, $$
(9)
and thus, the search direction is given by
$$ d_{k+1}= -Q_{k+1}g_{k+1}=- \mu_{k}g_{k+1} -\frac {s_{k}^{T}g_{k+1}}{s_{k}^{T}y_{k}}s_{k}+ \mu_{k} \frac{y_{k}^{T}g_{k+1} }{y_{k}^{T} y_{k}}y_{k}. $$
(10)
Various strategies can be considered in deriving the scaling parameter \(\mu_{k}\); we prefer the following which is due to Wolkowicz [19]:
$$ \mu_{k}=\frac{s_{k}^{T}s_{k}}{y_{k}^{T}s_{k}}-\sqrt{ \biggl( \frac {s_{k}^{T}s_{k}}{y_{k}^{T}s_{k}} \biggr)^{2}-\frac{s_{k}^{T}s_{k}}{y_{k}^{T}y_{k}}}. $$
(11)
The new search direction is then given by
$$ d_{k+1}= -\mu_{k} g_{k+1} - \varphi_{1} s_{k}+ \varphi_{2} y_{k}, $$
(12)
where
$$ \varphi_{1}=\frac{s_{k}^{T}g_{k+1}}{s_{k}^{T}y_{k}} $$
(13)
and
$$ \varphi_{2}=\mu_{k} \frac{y_{k}^{T}g_{k+1} }{y_{k}^{T} y_{k}}. $$
(14)
We present the algorithm of the proposed method as follows.

2.1 Algorithm (STCG)

In this section, we present the algorithm of the proposed method. It has been reported that the line search in conjugate gradient method performs more function evaluations so as to obtain a desirable steplength \(\alpha_{k}\) due to poor scaling of the search direction (see Nocedal [20]). As a consequence, we incorporate the acceleration scheme proposed by Andrei [21], so as to have some reduction in the function evaluations. The new approximation to the minimum instead of (2) is determined by
$$ x_{k+1}=x_{k}+\alpha_{k}\vartheta_{k} d_{k} , $$
(15)
where \(\vartheta_{k}=\frac{-r_{k}}{q_{k}}\), \(r_{k}=\alpha_{k} g_{k}^{T}d_{k}\), \(q_{k}=-\alpha_{k} ( g_{k}-g_{z} )d_{k}=-\alpha_{k} y_{k} d_{k} \), \(g_{z}=\nabla f ( z )\) and \(z=x_{k}+\alpha_{k} d_{k}\).
Algorithm 1
Step 1.
Select an initial point \(x_{o}\) and determine \(f (x_{o} )\) and \(g (x_{o} )\). Set \(d_{o}=-g_{o}\) and \(k=0\).
Step 2.
Test the stopping criterion \(\Vert g_{k}\Vert \)ϵ, if satisfied stop. Else go to Step 3.
Step 3.
Determine the steplength \(\alpha_{k}\) as follows:
Given \(\delta\in ( 0,1 ) \) and \(p_{1},p_{2}\), with \(0< p_{1}< p_{2}<1\).
(i)
Set \(\alpha=1\).
 
(ii)
Test the relation
$$ f (x+\alpha d_{k} )-f (x_{k} )\leq\alpha \delta g^{T}_{k} d_{k}. $$
(16)
 
(iii)
If (16) is satisfied, then \(\alpha_{k}=\alpha\) and go to Step 4 else choose a new \(\alpha\in [p_{1}\alpha,p_{2}\alpha ]\) and go to (ii).
 
Step 4.
Determine \(z=x_{k}+\alpha_{k} d_{k}\), compute \(g_{z}=\nabla f (z )\) and \(y_{k}=g_{k}-g_{z}\).
Step 5.
Determine \(r_{k}=\alpha_{k} g^{T}_{k} d_{k}\) and \(q_{k}=-\alpha_{k} y^{T}_{k} d_{k}\).
Step 6.
If \(q_{k} \neq0\), then \(\vartheta_{k}=\frac{r_{k}}{q_{k}}\), \(x_{k+1}=x_{k}+\vartheta_{k}\alpha_{k} d_{k}\) else \(x_{k+1}=x_{k}+\alpha_{k} d_{k}\).
Step 7.
Determine the search direction \(d_{k+1}\) by (12) where \(\mu_{k}\), \(\varphi_{1}\), and \(\varphi_{2}\) are computed by (11), (13), and (14), respectively.
Step 8.
Set \(k:=k+1\) and go to Step 2.

3 Convergence analysis

In this section, we analyze the global convergence of the propose method, where we assume that \(g_{k}\neq0\) for all \(k\geq0\) else a stationary point is obtained. First of all, we show that the search direction satisfies the sufficient descent and the conjugacy conditions. In order to present the results, the following assumptions are needed.
Assumption 1
The objective function f is convex and the gradient g is Lipschitz continuous on the level set
$$ K= \bigl\{ x\in\Re^{n}|f(x)\leq f(x_{0}) \bigr\} . $$
(17)
Then there exist some positive constants \(\psi_{1}\), \(\psi_{2}\), and L such that
$$ \bigl\Vert g(x)-g(y)\bigr\Vert \leq L\Vert x-y\Vert $$
(18)
and
$$ \psi_{1}\Vert z\Vert ^{2}\leq z^{T} G(x) z\leq\psi_{2}\Vert z\Vert ^{2}, $$
(19)
for all \(z \in R^{n}\) and \(x,y \in K\) where \(G(x)\) is the Hessian matrix of f.
Under Assumption 1, we can easily deduce that
$$ \psi_{1}\Vert s_{k}\Vert ^{2} \leq s^{T}_{k} y_{k}\leq\psi_{2}\Vert s_{k}\Vert ^{2}, $$
(20)
where \(s^{T}_{k} y_{k}=s^{T}_{k} \bar{G} s_{k} \) and \(\bar{G}=\int_{0}^{1} G(x_{k} + \lambda s_{k}) s_{k} \,d \lambda\). We begin by showing that the updating matrix (9) is positive definite.
Lemma 3.1
Suppose that Assumption 1 holds; then the matrix (9) is positive definite.
Proof
In order to show that the matrix (9) is positive definite we need to show that \(\mu_{k}\) is well defined and bounded. First, by the Cauchy-Schwarz inequality we have
$$\begin{aligned} \biggl(\frac{s_{k}^{T}s_{k}}{y_{k}^{T}s_{k}} \biggr)^{2}- \frac{s_{k}^{T}s_{k}}{y_{k}^{T}y_{k}}&= \frac{ (s_{k}^{T}s_{k} ) ( (s_{k}^{T}s_{k} ) (y_{k}^{T}y_{k} )- (y_{k}^{T}s_{k} )^{2} )}{(y_{k}^{T}s_{k})^{2}(y_{k}^{T}y_{k})} \\ &\geq 0, \end{aligned}$$
and this implies that the scaling parameter \(\mu_{k}\) is well defined. It follows that
$$\begin{aligned} 0&< \mu_{k} =\frac{s_{k}^{T}s_{k}}{y_{k}^{T}s_{k}}- \biggl( \biggl( \frac{s_{k}^{T}s_{k}}{y_{k}^{T}s_{k}} \biggr)^{2}-\frac{s_{k}^{T}s_{k}}{y_{k}^{T}y_{k}} \biggr)^{\frac{1}{2}} \\ & \leq\frac{s_{k}^{T}s_{k}}{y_{k}^{T}s_{k}}\leq\frac{\Vert s_{k}\Vert ^{2}}{\psi_{1}^{2}\Vert s_{k}\Vert ^{2}}=\frac{1}{\psi_{1}^{2}}. \end{aligned}$$
When the scaling parameter is positive and bounded above, then for any non-zero vector \(p\in\Re^{n}\) we obtain
$$\begin{aligned} p^{T} Q_{k+1}p&=\mu_{k} p^{T} p I + \frac{p^{T}s_{k}s_{k}^{T}p}{s_{k}^{T}y_{k}}- \mu _{k} \frac{p^{T}y_{k} y_{k}^{T}p }{y_{k}^{T} y_{k}} \\ &= \mu_{k} \biggl[\frac{(p^{T} p)(y_{k}^{T} y_{k})- p^{T}y_{k} y_{k}^{T}p}{y_{k}^{T} y_{k}} \biggr]+ \frac{(p^{T}s_{k})^{2}}{s_{k}^{T}y_{k}}. \end{aligned}$$
By the Cauchy-Schwarz inequality and (20), we have \((p^{T} p)(y_{k}^{T} y_{k})- (p^{T} y_{k} )(y_{k}^{T}p) \geq0 \) and \(y_{k}^{T} s_{k}>0\), which implies that the matrix (9) is positive definite \(\forall k\geq0\).
Observe also that
$$\begin{aligned} \operatorname{tr}(Q_{k+1})&=\operatorname{tr}(\mu_{k} I)+\frac{s_{k}^{T}s_{k}}{s_{k}^{T}y_{k}}- \mu_{k} \frac {y_{k}^{T}y_{k} }{y_{k}^{T} y_{k}} \\ &=(n-1)\mu_{k}+\frac{s_{k}^{T}s_{k}}{s_{k}^{T}y_{k}} \\ &\leq\frac{n-1}{\psi_{1}^{2}}+\frac{\Vert s_{k}\Vert ^{2}}{\psi_{1}\Vert s_{k}\Vert ^{2}} \\ &=\frac{\psi_{1}+n-1}{\psi_{1}^{2}}. \end{aligned}$$
(21)
Now,
$$ 0 < \frac{1}{\psi_{2}}\leq \biggl(\frac{s_{k}^{T}s_{k}}{y_{k}^{T}s_{k}} \biggr) \leq \operatorname{tr}(Q_{k+1}) \leq\frac{\psi_{1}+n-1}{\psi_{1}^{2}}. $$
(22)
Thus, \(\operatorname{tr}(Q_{k+1})\) is bounded. On the other hand, by the Sherman-Morrison House-Holder formula (\(Q^{-1}_{k+1}\) is actually the memoryless updating matrix updated from \(\frac{1}{\mu_{k}} I \) using the direct DFP formula), we can obtain
$$ Q^{-1}_{k+1}=\frac{1}{\mu_{k}} I - \frac{1}{\mu_{k}}\frac {y_{k}s_{k}^{T}+s_{k} y_{k}^{T}}{s_{k}^{T}y_{k}}+ \biggl(1+ \frac{1}{\mu_{k}} \frac {s^{T}_{k} s_{k} }{s_{k}^{T} y_{k}} \biggr)\frac{y_{k} y_{k}^{T} }{s_{k}^{T} y_{k}}. $$
(23)
We can also establish the boundedness of \(\operatorname{tr}(Q^{-1}_{k+1})\) as
$$\begin{aligned} \operatorname{tr}\bigl(Q^{-1}_{k+1}\bigr)&=\operatorname{tr} \biggl( \frac{1}{\mu_{k}} I \biggr)-\frac{2}{\mu_{k}}\frac {s_{k}^{T}y_{k}}{s_{k}^{T}y_{k}} + \frac{\Vert y_{k}\Vert ^{2}}{s_{k}^{T}y_{k}} +\frac{1}{\mu_{k}} \frac{\Vert s_{k}\Vert ^{2} \Vert y_{k}\Vert ^{2}}{ (s_{k}^{T} y_{k} )^{2}} \\ &\leq\frac{n}{\mu_{k}} -\frac{2}{\mu_{k}}+\frac{L^{2}\Vert s_{k}\Vert ^{2}}{\psi_{1}\Vert s_{k}\Vert ^{2}} + \frac{1}{\mu_{k}}\frac{L^{2}\Vert s_{k}\Vert ^{4}}{\psi^{2}_{1}\Vert s_{k}\Vert ^{4}} \\ &\leq\frac{(n-2)}{\psi_{1}^{2}} +\frac{L^{2}}{\psi_{1}} +\frac{L^{2}}{\psi ^{4}_{1}} \\ &=\omega, \end{aligned}$$
(24)
where \(\omega=\frac{(n-2)}{\psi_{1}^{2}}+\frac{L^{2}}{\psi_{1}} +\frac {L^{2}}{\psi^{4}_{1}} >0\), for \(n \geq2\). □
Now, we shall state the sufficient descent property of the proposed search direction in the following lemma.
Lemma 3.2
Suppose that Assumption 1 holds on the objective function f then the search direction (12) satisfies the sufficient descent condition \(g_{k+1}^{T} d_{k+1}\leq-c\Vert g_{k+1}\Vert ^{2}\).
Proof
Since \(- g_{k+1}^{T}d_{k+1} \geq\frac{1}{\operatorname{tr}(Q^{-1}_{k+1})}\Vert g_{k+1}\Vert ^{2} \) (see for example Leong [22] and Babaie-Kafaki [23]), then by using (24) we have
$$ -g_{k+1}^{T}d_{k+1}\geq c\Vert g_{k+1}\Vert ^{2}, $$
(25)
where \(c=\min \{1,\frac{1}{\omega} \}\). Thus,
$$ g_{k+1}^{T}d_{k+1} \leq-c\Vert g_{k+1}\Vert ^{2}. $$
(26)
Dai-Liao [24] extended the classical conjugacy condition from \(y_{k} ^{T} d_{k+1}=0\) to
$$ y_{k} ^{T} d_{k+1} =-t \bigl(s_{k}^{T}g_{k+1}\bigr), $$
(27)
where \(t\geq0\). Thus, we can also show that our proposed method satisfies the above conjugacy condition. □
Lemma 3.3
Suppose that Assumption 1 holds, then the search direction (12) satisfies the conjugacy condition (27).
Proof
By (12), we obtain
$$\begin{aligned} y_{k} ^{T} d_{k+1}&=-\mu y_{k}^{T} g_{k+1}- \frac {s^{T}_{k}g_{k+1}}{s^{T}_{k}y_{k}} y_{k}^{T}s_{k} +\mu\frac{y_{k}^{T} g_{k+1}}{y_{k}^{T} y_{k}}y_{k}^{T} y_{k} \\ &=-\mu y_{k}^{T} g_{k+1}- \frac {s_{k}^{T}g_{k+1}}{s_{k}^{T}y_{k}}s_{k}^{T}y_{k}+ \mu\frac {y_{k}^{T}g_{k+1}}{y_{k}^{T} y_{k}}y_{k}^{T} y_{k} \\ &=-\mu y_{k}^{T} g_{k+1}- s_{k}^{T}g_{k+1}+ \mu y_{k}^{T} g_{k+1} \\ &=- s_{k}^{T}g_{k+1}, \end{aligned}$$
where the result holds for \(t=1\). The following lemma gives the boundedness of the search direction. □
Lemma 3.4
Suppose that Assumption 1 holds then there exists a constant \(p>0\) such that \(\Vert d_{k+1}\Vert \leq P\Vert g_{k+1}\Vert \), where \(d_{k+1}\) is defined by (12).
Proof
A direct result of (10) and the boundedness of \(\operatorname{tr}(Q_{k+1})\) gives
$$\begin{aligned} \Vert d_{k+1}\Vert &=\Vert Q_{k+1}g_{k+1} \Vert \\ &\leq \operatorname{tr}(Q_{k+1})\Vert g_{k+1}\Vert \\ & \leq P\Vert g_{k+1}\Vert , \end{aligned}$$
(28)
where \(P= (\frac{\psi_{1}+n-1}{\psi_{1}^{2}} )\). □
In order to establish the convergence result, we give the following lemma.
Lemma 3.5
Suppose that Assumption 1 holds. Then there exist some positive constants \(\gamma_{1}\) and \(\gamma_{2}\) such that for any steplength \(\alpha_{k}\) generated by Step 3 of Algorithm 1 will satisfy either of the following:
$$ f(x_{k}+\alpha_{k} d_{k})-f(x_{k}) \leq\frac{-\gamma_{1} (g_{k}^{T}d_{k} )^{2}}{\Vert d_{k}\Vert ^{2}}, $$
(29)
or
$$ f(x_{k}+\alpha_{k}d_{k})-f(x_{k}) \leq\gamma_{2} g_{k}^{T}d_{k}. $$
(30)
Proof
Suppose that (16) is satisfied with \(\alpha_{k}=1\), then
$$ f(x_{k}+\alpha_{k}d_{k})-f(x_{k}) \leq\delta g_{k}^{T}d_{k}, $$
(31)
implies that (30) is satisfied with \(\gamma_{2}=\delta\).
Suppose \(\alpha_{k}< 1\), and that (16) is not satisfied. Then for a steplength \(\alpha\leq\frac{\alpha_{k}}{p_{1}}\) we have
$$ f(x_{k}+\alpha d_{k})-f(x_{k})> \delta\alpha g_{k}^{T}d_{k}. $$
(32)
Now, by the mean-value theorem there exists a scalar \(\tau_{k}\in(0,1)\) such that
$$ f(x_{k}+\alpha d_{k})-f(x_{k})= \alpha g ( x_{k}+\tau\alpha d_{k} )^{T} d_{k}. $$
(33)
From (32) we have
$$\begin{aligned} ( \delta-1 ) \alpha g_{k}^{T}d_{k} & < \alpha \bigl(g(x_{k}+\tau_{k}\alpha d_{k})-g_{k} \bigr)^{T}d_{k} \\ &=\alpha y_{k}^{T} d_{k} \\ &< L \bigl( \alpha \Vert d_{k}\Vert \bigr) ^{2}, \end{aligned}$$
which implies
$$ \alpha\geq-\frac{(1-\delta)(g_{k}^{T}d_{k})}{L \Vert d_{k}\Vert ^{2}}. $$
(34)
Now,
$$ \alpha_{k}\geq p_{1}\alpha\geq- \frac{(1-\delta)(g_{k}^{T}d_{k})}{L \Vert d_{k}\Vert ^{2}}. $$
(35)
Substituting (34) in (16) we have the following:
$$\begin{aligned} f(x_{k}+\alpha_{k}d_{k})-f(x_{k}) & \leq-\frac{\delta(1-\delta)(g_{k}^{T}d_{k})}{L \Vert d_{k}\Vert ^{2}} \bigl(g_{k}^{T}d_{k}\bigr) \\ &=\frac{-\gamma_{1} (g_{k}^{T}d_{k} )^{2}}{\Vert d_{k}\Vert ^{2}}, \end{aligned}$$
where
$$\gamma_{1}=\frac{\delta(1-\delta)}{L }. $$
Therefore
$$ f(x_{k}+\alpha_{k} d_{k})-f(x_{k}) \leq\frac{-\gamma_{1} (g_{k}^{T}d_{k} )^{2}}{\Vert d_{k}\Vert ^{2}}. $$
(36)
 □
Theorem 3.6
Suppose that Assumption 1 holds. Then Algorithm 1 generates a sequence of approximation \(\{x_{k} \}\) such that
$$ \lim_{k\rightarrow\infty} \Vert g_{k}\Vert = 0. $$
(37)
Proof
As a direct consequence of Lemma 3.4, the sufficient descent property (26), and the boundedness of the search direction (28) we have
$$\begin{aligned} f(x_{k}+\alpha_{k} d_{k})-f(x_{k}) &\leq\frac{-\gamma_{1} (g_{k}^{T}d_{k} )^{2}}{\Vert d_{k}\Vert ^{2}} \\ &\leq\frac{-\gamma_{1} c^{2}\Vert g_{k}\Vert ^{4}}{P^{2}\Vert g_{k}\Vert ^{2}} \\ &=\frac{-\gamma_{1} c^{2}}{P^{2}}\Vert g_{k}\Vert ^{2} \end{aligned}$$
(38)
or
$$\begin{aligned} f(x_{k}+\alpha_{k} d_{k})-f(x_{k}) &\leq\gamma_{1} g_{k}^{T}d_{k} \\ &\leq-\gamma_{1} c^{2}\Vert g_{k}\Vert ^{2}. \end{aligned}$$
(39)
Hence, in either case, there exists a positive constant \(\gamma_{3}\) such that
$$ f(x_{k}+\alpha_{k} d_{k})-f(x_{k}) \leq-\gamma_{3}\Vert g_{k}\Vert ^{2}. $$
(40)
Since the steplength \(\alpha_{k} \) generated by Algorithm 1 is bounded away from zero, (38) and (39) imply that \(f (x_{k} )\) is a non-increasing sequence. Thus, by the boundedness of \(f (x_{k} )\) we have
$$0=\lim_{k \rightarrow\infty} \bigl(f (x_{k+1} )-f (x_{k} ) \bigr)\leq-\gamma_{3}\lim_{k \rightarrow\infty} \Vert g_{k}\Vert ^{2}, $$
and as a result
$$ \lim_{k\rightarrow\infty} \Vert g_{k}\Vert =0. $$
(41)
 □

4 Numerical results

In this section, we present the results obtained from the numerical experiment of our proposed method in comparison with the CG-DESCENT (CG-DESC) [9], three-term Hestenes-Stiefel (TTHS) [11], three-term Polak-Ribiere-Polyak (TTPRP) [10], and TTCG [12] methods. We evaluate the performance of these methods based on iterations and function evaluations. By considering some standard unconstrained optimization test problems obtained from Andrei [25], we conducted ten numerical experiments for each test function with the size of the variable ranging from \(70\leq n \leq45\mbox{,}000\). The algorithms were implemented using Matlab subroutine programming on a PC (Intel(R) core(TM)2 Duo E8400 3.00 GHz 3 GB) 32-bit Operating system. The program terminates whenever \(\Vert g_{k}\Vert <\epsilon\) where \(\epsilon=10^{-6}\) or a method failed to converges within 2,000 iterations. The latter requirement is represented by the symbol ‘-’. An Armijo-type line search suggested by Byrd and Nocedal [26] was used for all the methods under consideration. Table 1 in the appendices gives the performance of the algorithms in terms of iterations and function evaluations. TTPRP solves 81% of the test problems, TTHS solves 88% of the test problems, CG-DESCENT solves 85% of the test problems, and STCG solves 90% of the test problems, whereas TTCG solves 85% of the test problems. The performance of STCG over TTPRP is that TTPRP needs 16% and 60% more, on average, in terms of the number of iterations and function evaluations, respectively, than STCG. The improvement of STCG over TTHS is that STCG needs 2% and 57% less, on average, in terms of number of iterations and function evaluations, respectively, than TTHS. The improvement of STCG over CG-DESCENT algorithms is that CG-DESCENT needs 10% and 70% more, on average, in terms of the number of iterations and function evaluations, respectively, than STCG. Similarly, the improvement of STCG over TTCG is that STCG needs 21% and 79% less, on average, in terms of the number of iterations and function evaluations, respectively, than TTCG. In order to further examine the performance of these methods, we employ the performance profile of Dolan and Moré [27]. Figures 1-2 give the performance profile plots of these methods in terms of iterations and function evaluations and the top curve corresponds to the method with the highest win which indicates that the performance of the proposed method is highly encouraging and substantially outperforms any of the other methods considered.

5 Conclusion

We have presented a new three-term conjugate gradient method for solving nonlinear large scale unconstrained optimization problems by considering a modification of the quasi-Newton memoryless DFP update of the inverse Hessian approximation. A remarkable property of the proposed method is that both the sufficient and the conjugacy conditions are satisfied and the global convergence is established under some mild assumption. The numerical results show that the proposed method is promising and more efficient than any of the other methods considered.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

We hereby declare that there are no competing interests with regard to the manuscript.

Authors’ contributions

We all participated in the establishment of the basic concepts, the convergence properties of the proposed method and in the experimental result in comparison of the proposed method with order existing methods.
Anhänge

Appendix

Table 1
Numerical results of TTPRP, TTHS, CG-DESCENT, STCG, and TTCG
Test functions
Dimension
TTPRP
TTHS
CG-DESC.
STCG
TTCG
NI
NF
NI
NF
NI
NF
NI
NF
NI
NF
Extended BD1
70
27
73
39
142
28
102
19
31
25
133
180
28
77
50
207
28
102
19
31
26
157
863
31
85
51
194
31
124
20
33
26
157
1,362
31
85
65
259
31
124
20
33
26
157
6,500
31
85
37
144
31
124
20
33
28
164
11,400
31
85
52
216
31
124
20
33
28
164
17,000
31
85
55
215
31
124
20
33
28
164
33,200
32
88
59
249
31
124
21
34
28
164
42,250
32
88
56
205
31
124
-
-
28
164
45,000
32
88
58
220
31
124
22
37
28
164
Extended Rosenbrock
70
44
227
23
156
55
590
125
156
87
828
180
52
272
40
264
42
349
119
186
129
1,243
863
55
285
41
290
33
269
100
136
115
1,098
1,362
60
315
46
323
28
230
91
142
-
-
6,500
62
326
22
143
27
220
103
147
-
-
11,400
74
401
23
159
27
209
116
191
-
-
17,000
82
436
22
143
30
236
111
141
-
-
33,200
62
322
39
240
28
213
83
125
-
-
42,250
67
355
21
155
29
223
133
157
-
-
45,000
75
393
22
158
22
174
134
157
-
-
Diagonal 7
70
11
22
4
40
4
52
3
4
6
18
180
11
22
4
40
4
52
3
4
6
18
863
12
24
4
40
4
52
3
4
6
18
1,362
12
24
4
40
4
52
3
4
6
18
6,500
12
24
4
40
4
52
4
5
6
18
11,400
12
24
4
40
4
52
4
5
6
18
17,000
34
53
4
40
4
52
4
5
6
18
33,200
-
-
4
40
4
52
4
5
6
18
42,250
-
-
4
40
4
52
4
5
6
18
45,000
-
-
4
40
4
52
4
5
6
18
DENSCHNF
70
25
126
47
403
20
171
6
17
15
126
180
25
126
49
420
20
171
6
18
16
136
863
27
136
50
429
21
179
7
18
16
135
1,362
27
136
52
446
22
188
7
18
16
135
6,500
28
141
53
455
22
188
19
31
16
135
11,400
28
141
53
455
22
188
19
31
16
135
17,000
29
146
53
455
22
188
19
31
16
135
33,200
29
146
54
463
22
188
19
31
16
135
42,250
29
146
54
463
22
188
19
31
16
135
45,000
29
146
55
472
22
188
19
31
16
135
Extended Himmelblau
70
34
135
20
126
19
114
9
15
18
124
180
36
143
16
85
19
114
9
15
18
124
863
36
143
15
76
18
121
9
15
18
124
1,362
37
147
12
75
18
121
9
15
18
124
6,500
38
151
9
54
19
128
9
15
20
137
11,400
39
155
11
78
19
128
9
15
20
137
17,000
39
155
12
76
19
128
9
15
20
137
33,200
40
159
24
152
19
128
9
15
20
137
42,250
40
159
16
136
19
128
9
15
20
137
45,000
40
159
13
69
19
128
9
15
20
137
DQDRTIC
70
5
5
5
24
5
36
-
-
43
362
180
5
5
5
27
5
35
-
-
46
391
863
5
5
5
31
5
35
-
-
44
371
1,362
5
5
5
29
5
35
-
-
46
395
6,500
5
5
5
28
5
35
-
-
111
961
11,400
5
5
5
24
5
35
-
-
60
516
17,000
5
5
5
33
5
35
-
-
37
320
33,200
5
5
5
26
5
35
-
-
59
516
42,250
5
5
5
29
5
35
-
-
64
548
45,000
5
5
5
27
5
35
-
-
55
462
HIMMELH
70
-
-
-
-
-
-
7
7
23
80
180
-
-
-
-
-
-
7
7
18
54
863
-
-
-
-
-
-
7
7
23
70
1,362
-
-
-
-
-
-
7
7
22
77
6,500
-
-
-
-
-
-
7
7
23
83
11,400
-
-
-
-
-
-
7
7
28
71
17,000
-
-
-
-
-
-
7
7
22
65
33,200
-
-
-
-
-
-
7
7
33
90
42,250
-
-
-
-
-
-
7
7
29
89
45,000
-
-
-
-
-
-
7
7
26
91
Extended BD2
70
30
96
19
73
9
37
13
23
36
237
180
31
100
22
87
9
37
13
23
39
254
863
34
110
11
50
10
43
13
23
41
264
1,362
34
110
11
44
10
43
13
23
43
276
6,500
35
114
12
40
10
40
13
23
42
272
11,400
36
118
25
66
10
43
13
23
43
273
17,000
36
118
18
70
10
43
13
23
36
231
33,200
37
122
10
45
10
48
13
23
39
246
42,250
37
122
17
71
10
38
13
23
37
237
45,000
37
122
9
39
10
38
13
23
37
236
Extended Maratos
70
25
135
23
60
26
86
37
103
109
934
180
25
143
24
63
26
86
37
103
107
895
863
27
143
24
63
26
86
38
104
102
871
1,362
27
147
33
82
-
-
38
104
112
887
6,500
27
151
94
209
-
-
38
104
121
1,034
11,400
120
308
110
246
-
-
38
104
118
949
17,000
278
681
102
229
-
-
38
104
119
1,004
33,200
-
-
140
302
-
-
38
104
96
814
42,250
-
-
140
302
-
-
38
104
105
867
45,000
-
-
159
350
-
-
38
104
92
787
NONDIA
70
8
52
-
-
12
141
12
37
34
441
180
11
83
-
-
14
170
18
27
-
-
863
14
119
-
-
23
337
68
77
-
-
1,362
11
96
-
-
26
389
32
41
-
-
6,500
16
155
-
-
1,029
1,555
77
90
-
-
11,400
16
167
-
-
-
-
161
185
-
-
17,000
16
168
-
-
-
-
-
-
-
-
33,200
16
168
-
-
-
-
-
-
-
-
42,250
21
234
-
-
-
-
-
-
-
-
45,000
23
247
-
-
-
-
-
-
-
-
DENSCHNB
70
25
50
30
82
6
13
5
6
13
29
180
25
50
27
76
6
13
5
6
14
31
863
27
54
28
67
6
13
6
7
14
31
1,362
27
54
30
73
6
13
6
7
14
31
6,500
28
56
23
55
6
13
6
7
14
31
11,400
28
56
34
86
6
13
6
7
14
31
17,000
29
58
31
76
6
13
6
7
14
31
33,200
29
58
31
83
6
13
6
7
14
31
42,250
29
58
38
93
6
13
6
7
14
31
45,000
29
58
29
79
6
13
6
7
14
31
EG2
70
31
102
12
37
35
180
19
59
-
-
180
87
321
18
27
31
172
68
96
-
-
863
-
-
68
77
-
-
25
100
-
-
1,362
-
-
32
41
-
-
-
-
-
-
6,500
-
-
77
90
-
-
25
107
-
-
11,400
-
-
-
-
-
-
-
-
-
-
17,000
-
-
-
-
-
-
89
361
-
-
33,200
-
-
-
-
-
-
-
-
-
-
42,250
-
-
-
-
-
-
-
-
-
-
45,000
-
-
92
158
-
-
33
138
-
-
Raydan 2
70
5
5
5
5
5
5
4
4
5
41
180
5
5
5
5
5
5
4
4
5
41
863
5
5
5
5
5
5
4
4
5
41
1,362
5
5
5
5
5
5
4
4
5
41
6,500
6
6
6
6
6
6
4
4
5
41
11,400
6
6
6
6
6
6
4
4
5
41
17,000
6
6
6
6
6
6
4
4
5
41
33,200
6
6
6
6
6
6
4
4
5
41
42,250
6
6
6
6
6
6
4
4
5
41
45,000
6
6
6
6
6
6
4
4
5
41
ENGVAL1
70
49
137
30
139
29
181
53
60
54
375
180
48
154
28
137
30
157
52
61
50
413
863
67
273
29
145
31
135
49
88
55
402
1,362
81
325
33
159
30
134
49
98
57
525
6,500
283
1,486
32
139
23
156
50
100
39
263
11,400
100
461
29
173
28
192
51
97
40
271
17,000
-
-
23
132
27
175
52
131
43
302
33,200
-
-
30
164
29
244
52
94
54
373
42,250
-
-
25
160
29
244
52
91
44
318
45,000
-
-
27
119
29
244
51
104
39
223
HIMMELBG
70
5
5
5
5
5
5
4
4
4
4
180
5
5
5
5
5
5
5
5
5
5
863
6
6
6
6
6
6
5
5
5
5
1,362
6
6
6
6
6
6
5
5
6
6
6,500
7
7
7
7
7
7
6
6
6
6
11,400
7
7
7
7
7
7
6
6
6
6
17,000
8
8
8
8
8
8
6
6
6
6
33,200
8
8
8
8
8
8
7
7
7
7
42,250
8
8
8
8
8
8
7
7
7
7
45,000
8
8
8
8
8
8
7
7
7
7
Diagonal 5
70
4
4
4
4
4
4
4
4
3
21
180
4
4
4
4
4
4
4
4
3
21
863
4
4
4
4
4
4
4
4
3
21
1,362
4
4
4
4
4
4
4
4
3
21
6,500
4
4
4
4
4
4
4
4
3
21
11,400
4
4
4
4
4
4
4
4
4
22
17,000
4
4
4
4
4
4
4
4
4
22
33,200
4
4
4
4
4
4
4
4
4
22
42,250
4
4
4
4
4
4
4
4
4
22
45,000
4
4
4
4
4
4
4
4
4
22
Extended Tridigonal 1
70
343
465
19
24
19
24
22
40
17
51
180
-
-
21
24
20
24
22
40
20
51
863
-
-
21
25
21
26
28
46
20
61
1,362
-
-
22
29
21
26
28
46
20
61
6,500
-
-
23
30
23
28
31
55
21
97
11,400
-
-
23
30
23
28
31
56
21
97
17,000
-
-
20
34
23
28
32
50
21
97
33,200
-
-
23
44
24
29
31
49
21
97
42,250
-
-
22
27
24
29
42
63
21
97
45,000
-
-
22
38
24
29
46
64
21
97
Extended Quadratic Penalty QP1
70
8
25
10
53
7
33
7
15
15
99
180
9
36
10
53
6
21
9
18
18
124
863
12
44
11
58
6
25
12
24
21
154
1,362
8
32
8
48
8
49
13
25
16
135
6,500
13
48
10
51
12
121
14
32
69
796
11,400
11
43
15
107
30
328
15
32
188
976
17,000
7
26
11
52
58
702
15
30
381
1,616
33,200
12
55
13
85
231
2,500
16
43
-
-
42,250
13
52
10
61
381
2,950
16
43
-
-
45,000
8
39
10
61
433
3,584
15
33
-
-
Diagonal 8
70
9
18
4
9
3
7
3
5
4
33
180
9
18
4
9
3
7
3
5
4
33
863
10
20
4
10
4
9
3
5
4
33
1,362
10
20
4
12
4
10
3
5
4
33
6,500
10
20
4
10
4
8
3
5
4
33
11,400
10
20
4
10
4
8
3
5
4
33
17,000
10
20
4
12
4
8
3
5
4
33
33,200
13
24
4
11
4
8
3
5
4
33
42,250
23
36
4
10
4
8
3
5
4
33
45,000
23
36
4
10
4
8
3
5
4
33
Extended Tridigonal 2
70
44
155
13
25
19
24
18
23
17
68
180
45
157
20
22
20
25
18
23
20
84
863
42
146
21
43
21
26
17
21
20
84
1,362
42
146
20
27
21
26
17
21
20
84
6,500
42
146
22
26
23
28
17
22
21
97
11,400
42
146
20
27
23
28
17
22
21
97
17,000
42
146
23
27
23
28
17
22
21
97
33,200
41
143
23
25
24
29
17
22
21
97
42,250
41
143
24
51
24
29
17
22
21
97
45,000
41
143
25
50
24
29
17
22
21
97
Literatur
2.
Zurück zum Zitat Polak, E, Ribiere, G: Note sur la convergence de méthodes de directions conjuguées. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 3(R1), 35-43 (1969) MathSciNetMATH Polak, E, Ribiere, G: Note sur la convergence de méthodes de directions conjuguées. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 3(R1), 35-43 (1969) MathSciNetMATH
3.
Zurück zum Zitat Liu, Y, Storey, C: Efficient generalized conjugate gradient algorithms, part 1: theory. J. Optim. Theory Appl. 69(1), 129-137 (1991) MathSciNetCrossRefMATH Liu, Y, Storey, C: Efficient generalized conjugate gradient algorithms, part 1: theory. J. Optim. Theory Appl. 69(1), 129-137 (1991) MathSciNetCrossRefMATH
4.
Zurück zum Zitat Hestenes, MR: The conjugate gradient method for solving linear systems. In: Proc. Symp. Appl. Math VI, American Mathematical Society, pp. 83-102 (1956) Hestenes, MR: The conjugate gradient method for solving linear systems. In: Proc. Symp. Appl. Math VI, American Mathematical Society, pp. 83-102 (1956)
5.
Zurück zum Zitat Dai, Y-H, Yuan, Y: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177-182 (1999) MathSciNetCrossRefMATH Dai, Y-H, Yuan, Y: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177-182 (1999) MathSciNetCrossRefMATH
6.
Zurück zum Zitat Fletcher, R: Practical Methods of Optimization. John Wiley & Sons, New York (2013) MATH Fletcher, R: Practical Methods of Optimization. John Wiley & Sons, New York (2013) MATH
7.
Zurück zum Zitat Al-Baali, M: Descent property and global convergence of the Fletcher-Reeves method with inexact line search. IMA J. Numer. Anal. 5(1), 121-124 (1985) MathSciNetCrossRefMATH Al-Baali, M: Descent property and global convergence of the Fletcher-Reeves method with inexact line search. IMA J. Numer. Anal. 5(1), 121-124 (1985) MathSciNetCrossRefMATH
8.
Zurück zum Zitat Gilbert, JC, Nocedal, J: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2(1), 21-42 (1992) MathSciNetCrossRefMATH Gilbert, JC, Nocedal, J: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2(1), 21-42 (1992) MathSciNetCrossRefMATH
9.
Zurück zum Zitat Hager, WW, Zhang, H: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16(1), 170-192 (2005) MathSciNetCrossRefMATH Hager, WW, Zhang, H: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16(1), 170-192 (2005) MathSciNetCrossRefMATH
10.
Zurück zum Zitat Zhang, L, Zhou, W, Li, D-H: A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26(4), 629-640 (2006) MathSciNetCrossRefMATH Zhang, L, Zhou, W, Li, D-H: A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26(4), 629-640 (2006) MathSciNetCrossRefMATH
11.
Zurück zum Zitat Zhang, L, Zhou, W, Li, D: Some descent three-term conjugate gradient methods and their global convergence. Optim. Methods Softw. 22(4), 697-711 (2007) MathSciNetCrossRefMATH Zhang, L, Zhou, W, Li, D: Some descent three-term conjugate gradient methods and their global convergence. Optim. Methods Softw. 22(4), 697-711 (2007) MathSciNetCrossRefMATH
12.
Zurück zum Zitat Andrei, N: On three-term conjugate gradient algorithms for unconstrained optimization. Appl. Math. Comput. 219(11), 6316-6327 (2013) MathSciNetMATH Andrei, N: On three-term conjugate gradient algorithms for unconstrained optimization. Appl. Math. Comput. 219(11), 6316-6327 (2013) MathSciNetMATH
13.
Zurück zum Zitat Broyden, C: Quasi-Newton methods and their application to function minimisation. Mathematics of Computation 21, 368-381 (1967) MathSciNetCrossRefMATH Broyden, C: Quasi-Newton methods and their application to function minimisation. Mathematics of Computation 21, 368-381 (1967) MathSciNetCrossRefMATH
16.
Zurück zum Zitat Goldfarb, D: Extension of Davidon’s variable metric method to maximization under linear inequality and equality constraints. SIAM J. Appl. Math. 17(4), 739-764 (1969) MathSciNetCrossRefMATH Goldfarb, D: Extension of Davidon’s variable metric method to maximization under linear inequality and equality constraints. SIAM J. Appl. Math. 17(4), 739-764 (1969) MathSciNetCrossRefMATH
18.
Zurück zum Zitat Perry, JM: A class of conjugate gradient algorithms with a two step variable metric memory. Center for Mathematical Studies in Economies and Management Science. Northwestern University Press, Evanston (1977) Perry, JM: A class of conjugate gradient algorithms with a two step variable metric memory. Center for Mathematical Studies in Economies and Management Science. Northwestern University Press, Evanston (1977)
20.
Zurück zum Zitat Nocedal, J: Conjugate gradient methods and nonlinear optimization. In: Linear and Nonlinear Conjugate Gradient-Related Methods, pp. 9-23 (1996) Nocedal, J: Conjugate gradient methods and nonlinear optimization. In: Linear and Nonlinear Conjugate Gradient-Related Methods, pp. 9-23 (1996)
21.
Zurück zum Zitat Andrei, N: Acceleration of conjugate gradient algorithms for unconstrained optimization. Appl. Math. Comput. 213(2), 361-369 (2009) MathSciNetMATH Andrei, N: Acceleration of conjugate gradient algorithms for unconstrained optimization. Appl. Math. Comput. 213(2), 361-369 (2009) MathSciNetMATH
22.
Zurück zum Zitat Leong, WJ, San Goh, B: Convergence and stability of line search methods for unconstrained optimization. Acta Appl. Math. 127(1), 155-167 (2013) MathSciNetCrossRefMATH Leong, WJ, San Goh, B: Convergence and stability of line search methods for unconstrained optimization. Acta Appl. Math. 127(1), 155-167 (2013) MathSciNetCrossRefMATH
23.
Zurück zum Zitat Babaie-Kafaki, S: A modified scaled memoryless BFGS preconditioned conjugate gradient method for unconstrained optimization. 4OR 11(4), 361-374 (2013) MathSciNetCrossRefMATH Babaie-Kafaki, S: A modified scaled memoryless BFGS preconditioned conjugate gradient method for unconstrained optimization. 4OR 11(4), 361-374 (2013) MathSciNetCrossRefMATH
24.
Zurück zum Zitat Dai, Y-H, Liao, L-Z: New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43(1), 87-101 (2001) MathSciNetCrossRefMATH Dai, Y-H, Liao, L-Z: New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43(1), 87-101 (2001) MathSciNetCrossRefMATH
25.
Zurück zum Zitat Andrei, N: An unconstrained optimization test functions collection. Adv. Model. Optim. 10(1), 147-161 (2008) MathSciNetMATH Andrei, N: An unconstrained optimization test functions collection. Adv. Model. Optim. 10(1), 147-161 (2008) MathSciNetMATH
26.
Zurück zum Zitat Byrd, RH, Nocedal, J: A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal. 26(3), 727-739 (1989) MathSciNetCrossRefMATH Byrd, RH, Nocedal, J: A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal. 26(3), 727-739 (1989) MathSciNetCrossRefMATH
27.
Metadaten
Titel
A scaled three-term conjugate gradient method for unconstrained optimization
verfasst von
Ibrahim Arzuka
Mohd R Abu Bakar
Wah June Leong
Publikationsdatum
01.12.2016
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2016
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-016-1239-1

Weitere Artikel der Ausgabe 1/2016

Journal of Inequalities and Applications 1/2016 Zur Ausgabe