Skip to main content
Erschienen in: Microsystem Technologies 12/2011

01.12.2011 | Technical Paper

A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors

verfasst von: Huicong Liu, Cho Jui Tay, Chenggen Quan, Takeshi Kobayashi, Chengkuo Lee

Erschienen in: Microsystem Technologies | Ausgabe 12/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a MEMS piezoelectric energy harvester with a wide operating frequency range by incorporating a high-frequency piezoelectric cantilever and a metal base as the top and bottom stoppers with a low-frequency piezoelectric cantilever. Frequency up-conversion of the piezoelectric energy harvester is realized when the low-frequency piezoelectric cantilever impacts and scrapes through the high-frequency piezoelectric cantilever. For an input acceleration of 0.6 g, with top and bottom stopper distances of 0.75 and 1.1 mm, respectively, the operating frequency ranges from 33 to 43 Hz. The output voltage and power up to 95 mV and 94 nW can be achieved. Experimental results indicate that the frequency up-conversion mechanism significantly improves the effective power.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Beer FP, Johnston ER (1992) Mechanics of materials. McGraw-Hill Inc, New York Beer FP, Johnston ER (1992) Mechanics of materials. McGraw-Hill Inc, New York
Zurück zum Zitat Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices: a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:043001CrossRef Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices: a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:043001CrossRef
Zurück zum Zitat Erturk A, Hoffmann J, Inman DJ (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett 94:254102CrossRef Erturk A, Hoffmann J, Inman DJ (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett 94:254102CrossRef
Zurück zum Zitat Gieras JF, Oh J-H, Huzmezan M, Sane HS (2007) Electromechanical energy harvesting system. US Patent Application Publication US 2009/0079200 A1 Gieras JF, Oh J-H, Huzmezan M, Sane HS (2007) Electromechanical energy harvesting system. US Patent Application Publication US 2009/0079200 A1
Zurück zum Zitat Gu L, Livermore C (2011) Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation. Smart Mater Struct 20:045004CrossRef Gu L, Livermore C (2011) Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation. Smart Mater Struct 20:045004CrossRef
Zurück zum Zitat Jung SM, Yun KS (2010) Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation. Appl Phys Lett 96:111906CrossRef Jung SM, Yun KS (2010) Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation. Appl Phys Lett 96:111906CrossRef
Zurück zum Zitat Kamal TM, Elfrink R, Renaud M, Hohlfeld D, Goedbloed M, De Nooijer C, Jambunathan M, Van Schaijk R (2010) Modeling and characterization of MEMS-based piezoelectric harvesting devices. J Micromech Microeng 20:105023CrossRef Kamal TM, Elfrink R, Renaud M, Hohlfeld D, Goedbloed M, De Nooijer C, Jambunathan M, Van Schaijk R (2010) Modeling and characterization of MEMS-based piezoelectric harvesting devices. J Micromech Microeng 20:105023CrossRef
Zurück zum Zitat Kobayashi T, Ichiki M, Tsaur J, Maeda R (2005) Effect of multi-coating process on the orientation and microstructure of lead zirconate titanate (PZT) thin films derived by chemical solution deposition. Thin Solid Films 489:74–78CrossRef Kobayashi T, Ichiki M, Tsaur J, Maeda R (2005) Effect of multi-coating process on the orientation and microstructure of lead zirconate titanate (PZT) thin films derived by chemical solution deposition. Thin Solid Films 489:74–78CrossRef
Zurück zum Zitat Kulah H, Najafi K (2008) Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensors applications. IEEE Sens J 8:261–268CrossRef Kulah H, Najafi K (2008) Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensors applications. IEEE Sens J 8:261–268CrossRef
Zurück zum Zitat Lee DG, Carman G-P, Murphy D, Schulenburg C (2007) Novel micro vibration energy harvesting device using frequency up conversion. Proceedings of 14th international conference on solid-state sensors, actuators and microsystems (IEEE transducer 07), pp 871–874 Lee DG, Carman G-P, Murphy D, Schulenburg C (2007) Novel micro vibration energy harvesting device using frequency up conversion. Proceedings of 14th international conference on solid-state sensors, actuators and microsystems (IEEE transducer 07), pp 871–874
Zurück zum Zitat Lee C, Yu A, Yan L, Wang H, He JH, Zhang QX, Lau JH (2009) Characterization of intermediate In/Ag layers of low temperature fluxless solder based wafer bonding for MEMS packaging. Sens Actuators A 154(1):85–91CrossRef Lee C, Yu A, Yan L, Wang H, He JH, Zhang QX, Lau JH (2009) Characterization of intermediate In/Ag layers of low temperature fluxless solder based wafer bonding for MEMS packaging. Sens Actuators A 154(1):85–91CrossRef
Zurück zum Zitat Leland E, Wright P (2006) Resonance tuning of the piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater Struct 15:1413–1420CrossRef Leland E, Wright P (2006) Resonance tuning of the piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater Struct 15:1413–1420CrossRef
Zurück zum Zitat Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011) Piezoelectric MEMS energy harvester for low frequency vibrations with wideband operation range and steadily increased output power. IEEE J Microelectromech Syst 20(5):1131–1142 Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011) Piezoelectric MEMS energy harvester for low frequency vibrations with wideband operation range and steadily increased output power. IEEE J Microelectromech Syst 20(5):1131–1142
Zurück zum Zitat Lo H, Tai Y (2008) Parylene-based electrets power generators. J Micromech Microeng 18:104006CrossRef Lo H, Tai Y (2008) Parylene-based electrets power generators. J Micromech Microeng 18:104006CrossRef
Zurück zum Zitat Miller LM, Halvorsen E, Dong T, Wright PK (2011) Modeling and experimental verification of low-frequency MEMS energy harvesting from ambient vibrations. J Micromech Microeng 21:045029CrossRef Miller LM, Halvorsen E, Dong T, Wright PK (2011) Modeling and experimental verification of low-frequency MEMS energy harvesting from ambient vibrations. J Micromech Microeng 21:045029CrossRef
Zurück zum Zitat Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96:1457–1486CrossRef Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96:1457–1486CrossRef
Zurück zum Zitat Narimani A, Golnaraghi MF, Jazar GN (2004) Frequency response of a piecewise linear vibration isolator. J Vib Control 10:1775–1794MATHCrossRef Narimani A, Golnaraghi MF, Jazar GN (2004) Frequency response of a piecewise linear vibration isolator. J Vib Control 10:1775–1794MATHCrossRef
Zurück zum Zitat Nguyen DS, Halvorsen E, Jensen GU, Vogl A (2010) Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs. J Micromech Microeng 20:125009CrossRef Nguyen DS, Halvorsen E, Jensen GU, Vogl A (2010) Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs. J Micromech Microeng 20:125009CrossRef
Zurück zum Zitat Paracha AM, Basset P, Galayko D, Marty F, Bourouina T (2009) A silicon MEMS DC/DC converter for autonomous vibration-to-electrical-energy scavenger IEEE electron. Device Lett 30(5):481–483CrossRef Paracha AM, Basset P, Galayko D, Marty F, Bourouina T (2009) A silicon MEMS DC/DC converter for autonomous vibration-to-electrical-energy scavenger IEEE electron. Device Lett 30(5):481–483CrossRef
Zurück zum Zitat Paradiso JA, Starner T (2005) Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput 4:18–27CrossRef Paradiso JA, Starner T (2005) Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput 4:18–27CrossRef
Zurück zum Zitat Park JC, Park JY, Lee YP (2010) Modeling and characterization of piezoelectric d33-mode MEMS energy harvester. J Microelectromech Syst 19:1215–1222CrossRef Park JC, Park JY, Lee YP (2010) Modeling and characterization of piezoelectric d33-mode MEMS energy harvester. J Microelectromech Syst 19:1215–1222CrossRef
Zurück zum Zitat Renaud M, Fiorini P, van Schaijk R, van Hoof C (2009) Harvesting energy from the motion of human limb: the design and analysis of an impact-based piezoelectric generator. Smart Mater Struct 18:035001CrossRef Renaud M, Fiorini P, van Schaijk R, van Hoof C (2009) Harvesting energy from the motion of human limb: the design and analysis of an impact-based piezoelectric generator. Smart Mater Struct 18:035001CrossRef
Zurück zum Zitat Romero E, Warrington RO, Neuman MR (2009) Energy scavenging sources for biomedical sensors. Physiol Meas 30:R35–R62CrossRef Romero E, Warrington RO, Neuman MR (2009) Energy scavenging sources for biomedical sensors. Physiol Meas 30:R35–R62CrossRef
Zurück zum Zitat Roundy SJ (2003) Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. PhD thesis, University of California Roundy SJ (2003) Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. PhD thesis, University of California
Zurück zum Zitat Roundy S, Wirght PK, Rabaey JM (2003a) Energy scavenging for wireless sensor networks, 1st edn. Kluwer Academic, BostonCrossRef Roundy S, Wirght PK, Rabaey JM (2003a) Energy scavenging for wireless sensor networks, 1st edn. Kluwer Academic, BostonCrossRef
Zurück zum Zitat Roundy S, Wright PK, Rabaey J (2003b) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144CrossRef Roundy S, Wright PK, Rabaey J (2003b) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144CrossRef
Zurück zum Zitat Saadon S, Sidek O (2011) A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers Manage 52:500–504CrossRef Saadon S, Sidek O (2011) A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers Manage 52:500–504CrossRef
Zurück zum Zitat Sakane Y, Suzuki Y, Kasagi N (2008) Development of high-performance perfuluoriented polymer electret film and its application to micro power generation. J Micromech Microeng 18:104011CrossRef Sakane Y, Suzuki Y, Kasagi N (2008) Development of high-performance perfuluoriented polymer electret film and its application to micro power generation. J Micromech Microeng 18:104011CrossRef
Zurück zum Zitat Sari I, Balkan T, Kulah H (2008) An electromagnetic micro power generator for wideband environmental vibrations. Sensors Actuators A 123–124:63–72 Sari I, Balkan T, Kulah H (2008) An electromagnetic micro power generator for wideband environmental vibrations. Sensors Actuators A 123–124:63–72
Zurück zum Zitat Sari I, Balkan T, Kulah H (2010) An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique J. Microelectromech Syst 19:14–27CrossRef Sari I, Balkan T, Kulah H (2010) An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique J. Microelectromech Syst 19:14–27CrossRef
Zurück zum Zitat Shahruz SM (2006) Design of mechanical band-pass filters for energy scavenging. J Sound Vib 292:987CrossRef Shahruz SM (2006) Design of mechanical band-pass filters for energy scavenging. J Sound Vib 292:987CrossRef
Zurück zum Zitat Soliman MSM, Abdel-Rahman EM, El-Saadany EF, Mansour RR (2008) A wideband vibration-based energy harvester. J Micromech Microeng 18:115021CrossRef Soliman MSM, Abdel-Rahman EM, El-Saadany EF, Mansour RR (2008) A wideband vibration-based energy harvester. J Micromech Microeng 18:115021CrossRef
Zurück zum Zitat Soliman MSM, Abdel-Rahman EM, El-Saadany EF, Mansour RR (2009) A design procedure for wideband micropower generators. J Microelectromech Syst 18:1288–1299CrossRef Soliman MSM, Abdel-Rahman EM, El-Saadany EF, Mansour RR (2009) A design procedure for wideband micropower generators. J Microelectromech Syst 18:1288–1299CrossRef
Zurück zum Zitat Stanton SC, McGehee CC, Mann BP (2009) Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl Phys Lett 95:174103CrossRef Stanton SC, McGehee CC, Mann BP (2009) Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl Phys Lett 95:174103CrossRef
Zurück zum Zitat Suzuki Y, Miki D, Edamoto M, Honzumi M (2010) A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications. J Micromech Microeng 20:104002CrossRef Suzuki Y, Miki D, Edamoto M, Honzumi M (2010) A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications. J Micromech Microeng 20:104002CrossRef
Zurück zum Zitat Umeda M, Nakamura K, Ueha S (1996) Analysis of transformation of mechanical impact energy to electrical energy using a piezoelectric vibrator Japan. J Appl Phys 35:3267–3273CrossRef Umeda M, Nakamura K, Ueha S (1996) Analysis of transformation of mechanical impact energy to electrical energy using a piezoelectric vibrator Japan. J Appl Phys 35:3267–3273CrossRef
Zurück zum Zitat Wacharasindhu T, Kwon JW (2008) A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion. J Micromech Microeng 18:104016CrossRef Wacharasindhu T, Kwon JW (2008) A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion. J Micromech Microeng 18:104016CrossRef
Zurück zum Zitat Williams CB, Yates RB (1996) Analysis of a micro-electric generator for microsystems. Sens. Actuators A: Phys 52:8–11CrossRef Williams CB, Yates RB (1996) Analysis of a micro-electric generator for microsystems. Sens. Actuators A: Phys 52:8–11CrossRef
Zurück zum Zitat Xie J, Lee C, Wang MF, Liu Y, Feng H (2009) Characterization of heavily doped polysilicon films for CMOS-MEMS thermoelectric power generators. J Micromech Microeng 19:125029CrossRef Xie J, Lee C, Wang MF, Liu Y, Feng H (2009) Characterization of heavily doped polysilicon films for CMOS-MEMS thermoelectric power generators. J Micromech Microeng 19:125029CrossRef
Zurück zum Zitat Xie J, Lee C, Feng H (2010) Design, fabrication and characterization of CMOS MEMS-based thermoelectric power generators. IEEE J Microelectromechanical Syst 19(2):317–324CrossRef Xie J, Lee C, Feng H (2010) Design, fabrication and characterization of CMOS MEMS-based thermoelectric power generators. IEEE J Microelectromechanical Syst 19(2):317–324CrossRef
Zurück zum Zitat Yang B, Lee C (2010) Non-resonant electromagnetic wideband energy harvesting mechanism for low frequency vibrations. Microsyst Technol 16(6):961–966MathSciNetCrossRef Yang B, Lee C (2010) Non-resonant electromagnetic wideband energy harvesting mechanism for low frequency vibrations. Microsyst Technol 16(6):961–966MathSciNetCrossRef
Zurück zum Zitat Yang B, Lee C, Xiang W, Xie J, He JH, Kotlanka RK, Low SP, Feng H (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromech Microeng 19:035001CrossRef Yang B, Lee C, Xiang W, Xie J, He JH, Kotlanka RK, Low SP, Feng H (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromech Microeng 19:035001CrossRef
Zurück zum Zitat Yang B, Lee C, Kee WL, Lim SP (2010a) Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. SPIE J of Micro/Nanolithography, MEMS, and MOEMS (JM3) 9(2):023002CrossRef Yang B, Lee C, Kee WL, Lim SP (2010a) Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. SPIE J of Micro/Nanolithography, MEMS, and MOEMS (JM3) 9(2):023002CrossRef
Zurück zum Zitat Yang B, Lee C, Kotlanka RK, Xie J, Low SP (2010b) A MEMS rotary comb mechanism for harvesting kinetic energy of planar vibrations. J Micromech Microeng 20:065017CrossRef Yang B, Lee C, Kotlanka RK, Xie J, Low SP (2010b) A MEMS rotary comb mechanism for harvesting kinetic energy of planar vibrations. J Micromech Microeng 20:065017CrossRef
Zurück zum Zitat Yu D-Q, Lee C, Yan LL, Choi WK, Yu A, Lau JH (2009) The role of Ni buffer layer on high yield low temperature hermetic wafer bonding using In/Sn/Cu metallization. Applied Physics Lett 94:034105CrossRef Yu D-Q, Lee C, Yan LL, Choi WK, Yu A, Lau JH (2009) The role of Ni buffer layer on high yield low temperature hermetic wafer bonding using In/Sn/Cu metallization. Applied Physics Lett 94:034105CrossRef
Zurück zum Zitat Zhu D, Tudor MJ, Beeby SP (2010) Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol 21:022001CrossRef Zhu D, Tudor MJ, Beeby SP (2010) Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol 21:022001CrossRef
Zurück zum Zitat Zorlu O, Topal ET, Kulah H (2011) A Vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sensors J 11:481–488CrossRef Zorlu O, Topal ET, Kulah H (2011) A Vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sensors J 11:481–488CrossRef
Metadaten
Titel
A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors
verfasst von
Huicong Liu
Cho Jui Tay
Chenggen Quan
Takeshi Kobayashi
Chengkuo Lee
Publikationsdatum
01.12.2011
Verlag
Springer-Verlag
Erschienen in
Microsystem Technologies / Ausgabe 12/2011
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-011-1361-4

Weitere Artikel der Ausgabe 12/2011

Microsystem Technologies 12/2011 Zur Ausgabe

Neuer Inhalt