Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

13.02.2020

A self-verifying clustering approach to unsupervised matching of product titles

Zeitschrift:
Artificial Intelligence Review
Autoren:
Leonidas Akritidis, Athanasios Fevgas, Panayiotis Bozanis, Christos Makris
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The continuous growth of the e-commerce industry has rendered the problem of product retrieval particularly important. As more enterprises move their activities on the Web, the volume and the diversity of the product-related information increase quickly. These factors make it difficult for the users to identify and compare the features of their desired products. Recent studies proved that the standard similarity metrics cannot effectively identify identical products, since similar titles often refer to different products and vice-versa. Other studies employ external data sources to enrich the titles; these solutions are rather impractical, since the process of fetching external data is inefficient. In this paper we introduce UPM, an unsupervised algorithm for matching products by their titles that is independent of any external sources. UPM consists of three stages. During the first stage, the algorithm analyzes the titles and extracts combinations of words out of them. These combinations are evaluated in stage 2 according to several criteria, and the most appropriate of them are selected to form the initial clusters. The third phase is a post-processing verification stage that refines the initial clusters by correcting the erroneous matches. This stage is designed to operate in combination with all clustering approaches, especially when the data possess properties that prevent the co-existence of two data points within the same cluster. The experimental evaluation of UPM with multiple datasets demonstrates its superiority against the state-of-the-art clustering approaches and string similarity metrics, in terms of both efficiency and effectiveness.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise