Skip to main content
Erschienen in:

30.08.2024

A sentiment-guided session-aware recommender system

verfasst von: Purnima Khurana, Bhavna Gupta, Ravish Sharma, Punam Bedi

Erschienen in: The Journal of Supercomputing | Ausgabe 19/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Session-aware recommender systems analyze the sequential patterns of user actions to uncover the shifting preferences across sessions. User reviews enriched with sentiments can act as a guiding tool for session-aware systems. Existing methods for session-aware recommendations based on deep learning models do not consider the user’s sentiment granularity for generating reliable recommendations. In this paper, we have employed fuzzy-sentiment to guide the recommendation process toward a personalized and varied range of recommendations, resulting in an improved satisfaction level for the user. Fuzzy-sentiment provides a spectrum of sentiment scores (Highly positive, Positive, Neutral, Negative, and Highly Negative). This precise sentiment information allows the system to grasp the emotional tone and specific aspects of user experiences, shedding light on why users appreciated or were dissatisfied with a product. The sentiment scores are utilized to guide the recommendation process in the three-phase Sentiment-Guided Session-aware Recommender System, Fuzzy-SGSaRS. The first phase determines users’ sentiments from reviews about purchased products using the Fuzzy LSTM (FLSTM) technique. The learning process in the second phase employs a Graph Convolutional Network (GCN) to derive embeddings for Users, Interaction Sessions, and Products. The acquired embedding vectors are subsequently fed into the Double Deep Q-Network (DDQN) during the third phase to recommend intriguing products to the user(s). A series of experimental evaluations on four datasets of Amazon reviews illustrate that the proposed system outperformed various state-of-the-art methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Zadeh LA (2023) Fuzzy logic. Granular, fuzzy, and soft computing. Springer, Cham, pp 19–49 Zadeh LA (2023) Fuzzy logic. Granular, fuzzy, and soft computing. Springer, Cham, pp 19–49
6.
12.
Zurück zum Zitat Hidasi B, Karatzoglou A, Baltrunas L, Tikk D (2015) Session-based recommendations with recurrent neural networks. arXiv:0151.10693 Hidasi B, Karatzoglou A, Baltrunas L, Tikk D (2015) Session-based recommendations with recurrent neural networks. arXiv:​0151.​10693
22.
Zurück zum Zitat Agarwal B, Nayak R, Mittal N, Patnaik S (2020) Deep learning-based approaches for sentiment analysis. Springer, ChamCrossRef Agarwal B, Nayak R, Mittal N, Patnaik S (2020) Deep learning-based approaches for sentiment analysis. Springer, ChamCrossRef
27.
Zurück zum Zitat Socher R, Huval B, Manning CD, Ng AY (2012) Semantic compositionality through recursive matrix-vector spaces. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp 1201–1211. https://aclanthology.org/D12-1110 Socher R, Huval B, Manning CD, Ng AY (2012) Semantic compositionality through recursive matrix-vector spaces. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp 1201–1211. https://​aclanthology.​org/​D12-1110
28.
Zurück zum Zitat Dos Santos C, Gatti M (2014) Deep convolutional neural networks for sentiment analysis of short texts. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pp 69–78. https://aclanthology.org/C14-1008 Dos Santos C, Gatti M (2014) Deep convolutional neural networks for sentiment analysis of short texts. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pp 69–78. https://​aclanthology.​org/​C14-1008
29.
Zurück zum Zitat Preethi G, Krishna PV, Obaidat MS, Saritha V, Yenduri S (2017) Application of deep learning to sentiment analysis for recommender system on cloud. In: 2017 International Conference on Computer, Information and Telecommunication Systems (CITS), IEEE, pp 93–97. https://doi.org/10.1109/CITS.2017.8035341 Preethi G, Krishna PV, Obaidat MS, Saritha V, Yenduri S (2017) Application of deep learning to sentiment analysis for recommender system on cloud. In: 2017 International Conference on Computer, Information and Telecommunication Systems (CITS), IEEE, pp 93–97. https://​doi.​org/​10.​1109/​CITS.​2017.​8035341
32.
Zurück zum Zitat Morden JN, Khuman AS, Fasanmade A, Muhammad M (2022) A fuzzy logic approach to a hybrid lexicon-based sentiment analysis detection tool using healthcare COVID-19 news articles. Artificial intelligence in healthcare: recent applications and developments. Springer, Singapore, pp 215–228. https://doi.org/10.1007/978-981-19-5272-2_11CrossRef Morden JN, Khuman AS, Fasanmade A, Muhammad M (2022) A fuzzy logic approach to a hybrid lexicon-based sentiment analysis detection tool using healthcare COVID-19 news articles. Artificial intelligence in healthcare: recent applications and developments. Springer, Singapore, pp 215–228. https://​doi.​org/​10.​1007/​978-981-19-5272-2_​11CrossRef
45.
Zurück zum Zitat Pedrycz W, Gomide F (1998) An introduction to fuzzy sets: analysis and design. MIT Press, CambridgeCrossRef Pedrycz W, Gomide F (1998) An introduction to fuzzy sets: analysis and design. MIT Press, CambridgeCrossRef
49.
Zurück zum Zitat Davidson J, Liebald B, Liu J, Nandy P, Van Vleet T, Gargi U, Gupta S, He Y, Lambert M, Livingston B (2010) The youtube video recommendation system. In: Proceedings of the 4th ACM Conference on Recommender Systems, pp 293–296. https://doi.org/10.1145/1864708.1864770 Davidson J, Liebald B, Liu J, Nandy P, Van Vleet T, Gargi U, Gupta S, He Y, Lambert M, Livingston B (2010) The youtube video recommendation system. In: Proceedings of the 4th ACM Conference on Recommender Systems, pp 293–296. https://​doi.​org/​10.​1145/​1864708.​1864770
50.
Zurück zum Zitat Yu F, Liu Q, Wu S, Wang L, Tan T (2016) A dynamic recurrent model for next basket recommendation. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 729–732. https://doi.org/10.1145/2911451.2914683 Yu F, Liu Q, Wu S, Wang L, Tan T (2016) A dynamic recurrent model for next basket recommendation. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 729–732. https://​doi.​org/​10.​1145/​2911451.​2914683
52.
Zurück zum Zitat Chen W, Ren P, Cai F, Sun F, Rijke M (2020) Improving end-to-end sequential recommendations with intent-aware diversification. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp 175–184. https://doi.org/10.1145/3340531.3411897 Chen W, Ren P, Cai F, Sun F, Rijke M (2020) Improving end-to-end sequential recommendations with intent-aware diversification. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp 175–184. https://​doi.​org/​10.​1145/​3340531.​3411897
Metadaten
Titel
A sentiment-guided session-aware recommender system
verfasst von
Purnima Khurana
Bhavna Gupta
Ravish Sharma
Punam Bedi
Publikationsdatum
30.08.2024
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 19/2024
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-024-06456-4