Skip to main content
Erschienen in: Wireless Networks 3/2017

13.01.2016

A separation principle for resource allocation in industrial wireless sensor networks

verfasst von: Feilong Lin, Cailian Chen, Tian He, Kai Ma, Xinping Guan

Erschienen in: Wireless Networks | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Industrial production lines have been used to assemble a wide range of commercial goods such as metallurgy, automobile, and electronic devices. Since these production lines create tens of trillions of dollars annually, their production efficiency, cost, and safety are critical for global economy. This paper uses industrial wireless sensor networks (IWSNs) to monitor multi-stage production lines. Unlike traditional surveillance WSNs, IWSNs feature a unique cascaded network topology, which can be leveraged to optimize network performance (e.g., end-to-end delay). To our best knowledge, research along this direction is lacking. Specifically, considering the physical characteristics and functional requirements of production lines, we introduce the cascaded FieldNets where each FieldNet is a field sub-net corresponding to one process stage. In particular, the end-to-end minimization oriented resource allocation problem is concerned. It is a nonlinear mixed integer programming problem formulated by both (1) channel allocation among FieldNets and (2) multichannel transmission scheduling within each FieldNet. To solve it, a separation principle is proposed, by which we prove that the resource allocation within each FieldNet can be determined independently from the channels allocation among FieldNets. Performance evaluation demonstrates that the proposed resource allocation approach provides a \(10{\times }\) larger region of schedulability and achieves as low as 10 % of end-to-end delay compared with the scheduling approach in WirelessHART, and only consumes half of the energy based on some existing MACs such as Y-MAC and EM-MAC under high-traffic condition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahmed, I., Mohammed, A., & Alnuweiri, H. (2013). On the fairness of resource allocation in wireless mesh networks: A survey. Wireless Networks, 19(6), 1451–1468.CrossRef Ahmed, I., Mohammed, A., & Alnuweiri, H. (2013). On the fairness of resource allocation in wireless mesh networks: A survey. Wireless Networks, 19(6), 1451–1468.CrossRef
2.
Zurück zum Zitat Anastasi, G., Conti, M., & Di Francesco, M. (2011). A comprehensive analysis of the MAC unreliability problem in IEEE 802.15. 4 wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(1), 52–65.CrossRef Anastasi, G., Conti, M., & Di Francesco, M. (2011). A comprehensive analysis of the MAC unreliability problem in IEEE 802.15. 4 wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(1), 52–65.CrossRef
3.
Zurück zum Zitat Chen, C., Zhu, S., Guan, X., & Shen, X. (2014). Wireless sensor networks: Distributed consensus estimation. Berlin: Springer.CrossRefMATH Chen, C., Zhu, S., Guan, X., & Shen, X. (2014). Wireless sensor networks: Distributed consensus estimation. Berlin: Springer.CrossRefMATH
4.
Zurück zum Zitat Evans, P. C., & Annunziata, M. (2012). Industrial Internet: Pushing the boundaries of minds and machines (pp. 1–37). Fairfield: General Electric Co. Evans, P. C., & Annunziata, M. (2012). Industrial Internet: Pushing the boundaries of minds and machines (pp. 1–37). Fairfield: General Electric Co.
5.
Zurück zum Zitat Gilani, M. H. S., Sarrafi, I., & Abbaspour, M. (2013). An adaptive CSMA/TDMA hybrid MAC for energy and throughput improvement of wireless sensor networks. Ad Hoc Networks, 11(4), 1297–1304.CrossRef Gilani, M. H. S., Sarrafi, I., & Abbaspour, M. (2013). An adaptive CSMA/TDMA hybrid MAC for energy and throughput improvement of wireless sensor networks. Ad Hoc Networks, 11(4), 1297–1304.CrossRef
6.
Zurück zum Zitat Güngör, V. Ç., & Hancke, G. P. (2013). Industrial wireless sensor networks: Applications, protocols, and standards. Boca Raton: CRC Press. Güngör, V. Ç., & Hancke, G. P. (2013). Industrial wireless sensor networks: Applications, protocols, and standards. Boca Raton: CRC Press.
7.
Zurück zum Zitat Hemmecke, R., Köppe, M., Lee, J., & Weismantel, R. (2010). Nonlinear integer programming. In: 50 Years of Integer Programming 1958–2008 (pp. 561–618). Berlin: Springer. Hemmecke, R., Köppe, M., Lee, J., & Weismantel, R. (2010). Nonlinear integer programming. In: 50 Years of Integer Programming 1958–2008 (pp. 561–618). Berlin: Springer.
8.
Zurück zum Zitat IEEE Standards Committee. (2006). Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). IEEE Standards Committee. (2006). Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs).
9.
Zurück zum Zitat IEEE Standards Committee. (2012). IEEE standard for local and metropolitan area networks–part. 15.4: Low-rate wireless personal area networks (LR-WPANs)—Amendament1: MAC sublayer. IEEE Standards Committee. (2012). IEEE standard for local and metropolitan area networks–part. 15.4: Low-rate wireless personal area networks (LR-WPANs)—Amendament1: MAC sublayer.
10.
Zurück zum Zitat Int. Electrotech. Commission. (2010). Std. 62 591: Industrial communication networks-wireless communication network and communication profiles-WirelessHART. Int. Electrotech. Commission. (2010). Std. 62 591: Industrial communication networks-wireless communication network and communication profiles-WirelessHART.
11.
Zurück zum Zitat ISA100 Standards Committee. (2009). ISA100. 11a, wireless systems for industrial automation: Process control and related applications. ISA100 Standards Committee. (2009). ISA100. 11a, wireless systems for industrial automation: Process control and related applications.
12.
Zurück zum Zitat Kim, Y., Shin, H., & Cha, H. (2008). Y-MAC: An energy-efficient multi-channel MAC protocol for dense wireless sensor networks. In Proceedings of the 7th international conference on Information processing in sensor networks (IPSN’08), St. Louis, Missouri, USA (pp. 53–63). Kim, Y., Shin, H., & Cha, H. (2008). Y-MAC: An energy-efficient multi-channel MAC protocol for dense wireless sensor networks. In Proceedings of the 7th international conference on Information processing in sensor networks (IPSN’08), St. Louis, Missouri, USA (pp. 53–63).
13.
Zurück zum Zitat Kunert, K., Jonsson, M., & Uhlemann, E. (2010). Exploiting time and frequency diversity in IEEE 802.15. 4 industrial networks for enhanced reliability and throughput. In Proceedings of 15th IEEE conference on emerging technologies and factory automation (ETFA’10), Bilbao, Spain (pp. 1–9). Kunert, K., Jonsson, M., & Uhlemann, E. (2010). Exploiting time and frequency diversity in IEEE 802.15. 4 industrial networks for enhanced reliability and throughput. In Proceedings of 15th IEEE conference on emerging technologies and factory automation (ETFA’10), Bilbao, Spain (pp. 1–9).
14.
Zurück zum Zitat Li, D., & Sun, X. (2006). Nonlinear integer programming. Berlin: Springer.MATH Li, D., & Sun, X. (2006). Nonlinear integer programming. Berlin: Springer.MATH
15.
Zurück zum Zitat Lin, F., Chen, C., Li, L., Xu, H., & Guan, X. (2014). A novel spectrum sharing scheme for industrial cognitive radio networks: From collective motion perspective. In Proceedings of the 2014 IEEE international conference on communications (ICC’14), Sydney, Australia (pp. 203–208). Lin, F., Chen, C., Li, L., Xu, H., & Guan, X. (2014). A novel spectrum sharing scheme for industrial cognitive radio networks: From collective motion perspective. In Proceedings of the 2014 IEEE international conference on communications (ICC’14), Sydney, Australia (pp. 203–208).
16.
Zurück zum Zitat Marinho, J., & Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147–164.CrossRef Marinho, J., & Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147–164.CrossRef
17.
Zurück zum Zitat Neely, M. J. (2013). Delay-based network utility maximization. IEEE/ACM Transactions on Networking, 21(1), 41–54.CrossRef Neely, M. J. (2013). Delay-based network utility maximization. IEEE/ACM Transactions on Networking, 21(1), 41–54.CrossRef
18.
Zurück zum Zitat Pham, T. L., & Kim, D. S. (2014). Routing protocol over lossy links for ISA100. 11a industrial wireless networks. Wireless Networks, 20(8), 2359–2370.CrossRef Pham, T. L., & Kim, D. S. (2014). Routing protocol over lossy links for ISA100. 11a industrial wireless networks. Wireless Networks, 20(8), 2359–2370.CrossRef
19.
Zurück zum Zitat Ross, S. M. (2014). Introduction to probability models. London: Academic Press.MATH Ross, S. M. (2014). Introduction to probability models. London: Academic Press.MATH
20.
Zurück zum Zitat Saifullah, A., Xu, Y., Lu, C., & Chen, Y. (2015). End-to-end communication delay analysis in industrial wireless networks. IEEE Transactions on Computers, 64(5), 1361–1374.MathSciNetCrossRef Saifullah, A., Xu, Y., Lu, C., & Chen, Y. (2015). End-to-end communication delay analysis in industrial wireless networks. IEEE Transactions on Computers, 64(5), 1361–1374.MathSciNetCrossRef
21.
Zurück zum Zitat Shen, W., Zhang, T., Gidlund, M., & Dobslaw, F. (2013). SAS-TDMA: a source aware scheduling algorithm for real-time communication in industrial wireless sensor networks. Wireless Networks, 19(6), 1155–1170.CrossRef Shen, W., Zhang, T., Gidlund, M., & Dobslaw, F. (2013). SAS-TDMA: a source aware scheduling algorithm for real-time communication in industrial wireless sensor networks. Wireless Networks, 19(6), 1155–1170.CrossRef
22.
Zurück zum Zitat Shen, W., Zhang, T., Barac, F., & Gidlund, M. (2014). PriorityMAC: A priority-enhanced MAC protocol for critical traffic in industrial wireless sensor and actuator networks. IEEE Transactions on Industrial Informatics, 10(1), 824–835.CrossRef Shen, W., Zhang, T., Barac, F., & Gidlund, M. (2014). PriorityMAC: A priority-enhanced MAC protocol for critical traffic in industrial wireless sensor and actuator networks. IEEE Transactions on Industrial Informatics, 10(1), 824–835.CrossRef
23.
Zurück zum Zitat Tang, L., Sun, Y., Gurewitz, O., & Johnson, D. B. (2014). EM-MAC: A dynamic multichannel energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the 12th ACM international symposium on mobile ad hoc networking and computing (MobiHoc’11), Paris, France (pp. 23–34). Tang, L., Sun, Y., Gurewitz, O., & Johnson, D. B. (2014). EM-MAC: A dynamic multichannel energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the 12th ACM international symposium on mobile ad hoc networking and computing (MobiHoc’11), Paris, France (pp. 23–34).
24.
Zurück zum Zitat Toscano, E., & Lo Bello, L. (2012). Multichannel superframe scheduling for IEEE 802.15. 4 industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 8(2), 337–350.CrossRef Toscano, E., & Lo Bello, L. (2012). Multichannel superframe scheduling for IEEE 802.15. 4 industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 8(2), 337–350.CrossRef
25.
Zurück zum Zitat Willig, A., & Uhlemann, E. (2014). Deadline-aware scheduling of cooperative relayers in TDMA-based wireless industrial networks. Wireless Networks, 20(1), 73–88.CrossRef Willig, A., & Uhlemann, E. (2014). Deadline-aware scheduling of cooperative relayers in TDMA-based wireless industrial networks. Wireless Networks, 20(1), 73–88.CrossRef
Metadaten
Titel
A separation principle for resource allocation in industrial wireless sensor networks
verfasst von
Feilong Lin
Cailian Chen
Tian He
Kai Ma
Xinping Guan
Publikationsdatum
13.01.2016
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 3/2017
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-015-1188-5

Weitere Artikel der Ausgabe 3/2017

Wireless Networks 3/2017 Zur Ausgabe

Neuer Inhalt