Skip to main content
Erschienen in: Shape Memory and Superelasticity 2/2020

18.05.2020 | Special Issue: A Tribute to Prof. Dr. Gunther Eggeler, Invited Paper

A Short Review on the Effect of Cr on the fcc–hcp Phase Transition in Fe–Mn-Based Alloys

verfasst von: L. M. Guerrero, P. La Roca, F. Malamud, A. Baruj, M. Sade

Erschienen in: Shape Memory and Superelasticity | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of Cr on the fcc–hcp martensitic transformation in the Fe–Mn–Cr system has been discussed considering different aspects: (a) the relative phase stabilities, (b) the magnetic order of the fcc phase, (c) the structural parameters and volume change between fcc and hcp, (d) the driving force of the martensitic transformation and relevant thermodynamics quantities, (e) the thermal cycling behavior, and (f) the pseudoelastic effect. Particularly, in this work it has been found that when Cr content increases, the effect of cycling on the energy barrier decreases. This may be explained by a small volume change, which could lead to a slighter introduction of plastic deformation during thermal cycling through the martensitic transition.
Literatur
1.
Zurück zum Zitat Chowdhury P, Canadinc D, Sehitoglu H (2017) On deformation behavior of Fe–Mn based structural alloys. Mater Sci Eng R 122:1–28 Chowdhury P, Canadinc D, Sehitoglu H (2017) On deformation behavior of Fe–Mn based structural alloys. Mater Sci Eng R 122:1–28
2.
Zurück zum Zitat Peng H, Chen J, Wang Y, Wen Y (2017) Key factor achieving large recovery strains in policrystalline Fe–Mn–Si-based shape memory alloys: a review. Adv Eng Mater 20(3):1700741 Peng H, Chen J, Wang Y, Wen Y (2017) Key factor achieving large recovery strains in policrystalline Fe–Mn–Si-based shape memory alloys: a review. Adv Eng Mater 20(3):1700741
3.
Zurück zum Zitat Wen YH, Peng HB, Raabe D, Gutierrez-Urrutia I, Chen J, Du YY (2014) Large recovery strain in Fe–Mn–Si-based shape memory steels obtained by engineering annealing twin boundaries. Nat Commun 5:4964 Wen YH, Peng HB, Raabe D, Gutierrez-Urrutia I, Chen J, Du YY (2014) Large recovery strain in Fe–Mn–Si-based shape memory steels obtained by engineering annealing twin boundaries. Nat Commun 5:4964
4.
Zurück zum Zitat La Roca P, Baruj A, Sade M (2017) Shape-memory effect and pseudoelasticity in Fe–Mn-based alloys. Shap Mem Superelast 3:37–48 La Roca P, Baruj A, Sade M (2017) Shape-memory effect and pseudoelasticity in Fe–Mn-based alloys. Shap Mem Superelast 3:37–48
5.
Zurück zum Zitat Chowdhury P, Sehitoglu H (2017) Deformation physics of shape memory alloys—fundamentals at atomistic frontier. Prog Mater Sci 88:49–88 Chowdhury P, Sehitoglu H (2017) Deformation physics of shape memory alloys—fundamentals at atomistic frontier. Prog Mater Sci 88:49–88
6.
Zurück zum Zitat Acciarri MD, La Roca P, Guerrero LM, Baruj A, Curiale J, Sade M (2020) Effect of FCC anti-ferromagnetic ordering on the stability of phases in Fe60-XMn30Cr10CoX high entropy alloys. J Alloys Compd 823:153845 Acciarri MD, La Roca P, Guerrero LM, Baruj A, Curiale J, Sade M (2020) Effect of FCC anti-ferromagnetic ordering on the stability of phases in Fe60-XMn30Cr10CoX high entropy alloys. J Alloys Compd 823:153845
7.
Zurück zum Zitat Li Z, Pradeep KG, Raabe D (2016) Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534:227–230 Li Z, Pradeep KG, Raabe D (2016) Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534:227–230
8.
Zurück zum Zitat Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchieet RO (2014) A fracture-resistance high-entropy alloy for cryogenic applications. Science 345:1153–1158 Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchieet RO (2014) A fracture-resistance high-entropy alloy for cryogenic applications. Science 345:1153–1158
9.
Zurück zum Zitat Otto F, Dlouhý A, Somsen Ch, Bei H, Eggeler G, George EP (2013) The influences of temperature and microstructure on the tensile properties of CoCrFeMnNi high-entropy alloy. Acta Mater 61:5743–5755 Otto F, Dlouhý A, Somsen Ch, Bei H, Eggeler G, George EP (2013) The influences of temperature and microstructure on the tensile properties of CoCrFeMnNi high-entropy alloy. Acta Mater 61:5743–5755
10.
Zurück zum Zitat Laplanche G, Kostka A, Horst OM, Eggeler G, George EP (2016) Microstructure evaluation and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater 118:152–163 Laplanche G, Kostka A, Horst OM, Eggeler G, George EP (2016) Microstructure evaluation and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater 118:152–163
11.
Zurück zum Zitat Laplanche G, Kostka A, Reinhart C, Hunfeld J, Eggeler G, George EP (2017) Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater 128:292–303 Laplanche G, Kostka A, Reinhart C, Hunfeld J, Eggeler G, George EP (2017) Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater 128:292–303
12.
Zurück zum Zitat Schneider M, George EP, Manescau TJ, Záležák T, Hunfeld J, Dlouhý A, Eggeler G, Laplanche G (2020) Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CoCrNi medium-entropy alloy. Int J Plast 124:155–169 Schneider M, George EP, Manescau TJ, Záležák T, Hunfeld J, Dlouhý A, Eggeler G, Laplanche G (2020) Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CoCrNi medium-entropy alloy. Int J Plast 124:155–169
13.
Zurück zum Zitat Ding Q, Fu X, Chen D, Bei H, Gludovatz B, Li J, Zhang Z, George EP, Yu Q, Zhu T, Ritchie RO (2019) Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures. Mater Today 25:21–27 Ding Q, Fu X, Chen D, Bei H, Gludovatz B, Li J, Zhang Z, George EP, Yu Q, Zhu T, Ritchie RO (2019) Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures. Mater Today 25:21–27
14.
Zurück zum Zitat Woo W, Jeong JS, Kim DK, Lee CM, Choi SH, Suh JY, Lee SY, Harjo S, Kawasaki T (2020) Stacking fault energy analyses of additively manufactured stainless steel 316L and CrCoNi medium entropy alloy using in situ neutron diffraction. Sci Rep 10(1):1–5 Woo W, Jeong JS, Kim DK, Lee CM, Choi SH, Suh JY, Lee SY, Harjo S, Kawasaki T (2020) Stacking fault energy analyses of additively manufactured stainless steel 316L and CrCoNi medium entropy alloy using in situ neutron diffraction. Sci Rep 10(1):1–5
15.
Zurück zum Zitat Slone E, Miao J, George EP, Mills MJ (2019) Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures. Acta Mater 165:496–507 Slone E, Miao J, George EP, Mills MJ (2019) Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures. Acta Mater 165:496–507
16.
Zurück zum Zitat Kajiwara S, Liu D, Kikuchi T, Shinya N (2001) Remarkable improvement of shape memory effect in Fe–Mn–Si based shape memory alloys by producing NbC precipitates. Scr Mater 44:2809 Kajiwara S, Liu D, Kikuchi T, Shinya N (2001) Remarkable improvement of shape memory effect in Fe–Mn–Si based shape memory alloys by producing NbC precipitates. Scr Mater 44:2809
17.
Zurück zum Zitat Dunne DP, Li H (1995) The mechanism of thermomechanical training of a newly developed Fe–Mn–Si–Cr–Cu shape memory alloy. J Phys IV 5:C8 Dunne DP, Li H (1995) The mechanism of thermomechanical training of a newly developed Fe–Mn–Si–Cr–Cu shape memory alloy. J Phys IV 5:C8
18.
Zurück zum Zitat Baruj A, Troiani H (2008) The effect of pre-rolling Fe–Mn–Si-based shape memory alloys: mechanical properties and transmission electron microcopy examination. Mater Sci Eng A 481–482:574 Baruj A, Troiani H (2008) The effect of pre-rolling Fe–Mn–Si-based shape memory alloys: mechanical properties and transmission electron microcopy examination. Mater Sci Eng A 481–482:574
19.
Zurück zum Zitat Baruj A, Kikuchi T, Kajiwara S, Shinya N (2004) Improvement of shape memory properties of NbC containing Fe–Mn–Si based shape memory alloys by simple thermomechanical treatments. Mater Sci Eng A 378:333 Baruj A, Kikuchi T, Kajiwara S, Shinya N (2004) Improvement of shape memory properties of NbC containing Fe–Mn–Si based shape memory alloys by simple thermomechanical treatments. Mater Sci Eng A 378:333
20.
Zurück zum Zitat Peng HB, Wen YH, Liu G, Wang CP, Li N (2011) A role of α′ martensite introduced by thermo-mechanical treatment in improving shape memory effect of an Fe–Mn–Si–Cr–Ni Alloy. Adv Eng Mater 13:388 Peng HB, Wen YH, Liu G, Wang CP, Li N (2011) A role of α′ martensite introduced by thermo-mechanical treatment in improving shape memory effect of an Fe–Mn–Si–Cr–Ni Alloy. Adv Eng Mater 13:388
21.
Zurück zum Zitat Stanford N, Dunne DP (2006) Thermo-mechanical processing and the shape memory effect in an Fe–Mn–Si-based shape memory alloy. Mater Sci Eng A 422:352 Stanford N, Dunne DP (2006) Thermo-mechanical processing and the shape memory effect in an Fe–Mn–Si-based shape memory alloy. Mater Sci Eng A 422:352
22.
Zurück zum Zitat Wang D, Liu D, Dong Z, Liu W, Chen J (2001) Improvement of shape memory effect by ausforming in Fe–28Mn–6Si–5Cr alloy. Mater Sci Eng A 315:174 Wang D, Liu D, Dong Z, Liu W, Chen J (2001) Improvement of shape memory effect by ausforming in Fe–28Mn–6Si–5Cr alloy. Mater Sci Eng A 315:174
23.
Zurück zum Zitat Mertinger V, Nagy E, Benke M, Tranta F (2015) Characteristics of martensitic transformations induced by uni-axial tensile tests in a FeMnCr steel. Mater Sci Forum 812:161–166 Mertinger V, Nagy E, Benke M, Tranta F (2015) Characteristics of martensitic transformations induced by uni-axial tensile tests in a FeMnCr steel. Mater Sci Forum 812:161–166
24.
Zurück zum Zitat Troiani HE, Sade M, Bertolino G, Baruj A (2009) Martensitic transformation temperatures and microstructural features of FeMnCr alloys. Proc Esomat 2009:06002 Troiani HE, Sade M, Bertolino G, Baruj A (2009) Martensitic transformation temperatures and microstructural features of FeMnCr alloys. Proc Esomat 2009:06002
25.
Zurück zum Zitat Sade M, Baruj A, Troiani HE (2008) fcc/hcp martensitic transformation temperatures and thermal cycling evolution in Fe–Mn–Cr alloys. In: Proceedings of the international conference on new developments on metallurgy and applications of high strength steels, Buenos Aires, Argentina. pp 1183–1191 Sade M, Baruj A, Troiani HE (2008) fcc/hcp martensitic transformation temperatures and thermal cycling evolution in Fe–Mn–Cr alloys. In: Proceedings of the international conference on new developments on metallurgy and applications of high strength steels, Buenos Aires, Argentina. pp 1183–1191
26.
Zurück zum Zitat Guerrero LM, La Roca P, Malamud F, Baruj A, Sade M (2017) Composition effects on the fcc–hcp martensitic transformation and on the magnetic ordering of the fcc structure in Fe–Mn–Cr alloys. Mater Des 116:127–135 Guerrero LM, La Roca P, Malamud F, Baruj A, Sade M (2017) Composition effects on the fcc–hcp martensitic transformation and on the magnetic ordering of the fcc structure in Fe–Mn–Cr alloys. Mater Des 116:127–135
27.
Zurück zum Zitat Baruj A, Cotes S, Sade M, Fernández GA (1995) Coupling binary and ternary information in assessing the fcc/hcp relative phase stability and martensitic transformation in Fe–Mn–Co and Fe–Mn–Si alloys. J Phys IV 5(C8):373–378 Baruj A, Cotes S, Sade M, Fernández GA (1995) Coupling binary and ternary information in assessing the fcc/hcp relative phase stability and martensitic transformation in Fe–Mn–Co and Fe–Mn–Si alloys. J Phys IV 5(C8):373–378
28.
Zurück zum Zitat Cotes S, Guillermet AF, Sade M (1998) Phase stability and fcc/hcp martensitic transformation in Fe–Mn–Si alloys. Part I. Experimental study and systematics of the Ms and As temperatures. J Alloys Compd 278:231–238 Cotes S, Guillermet AF, Sade M (1998) Phase stability and fcc/hcp martensitic transformation in Fe–Mn–Si alloys. Part I. Experimental study and systematics of the Ms and As temperatures. J Alloys Compd 278:231–238
29.
Zurück zum Zitat Cotes SM, Guillermet AF, Sade M (2004) Fcc/hcp martensitic transformation in the Fe–Mn system: part II. Driving force and thermodynamics of the nucleation process. Metall Mater Trans A 35:83–91 Cotes SM, Guillermet AF, Sade M (2004) Fcc/hcp martensitic transformation in the Fe–Mn system: part II. Driving force and thermodynamics of the nucleation process. Metall Mater Trans A 35:83–91
30.
Zurück zum Zitat Cotes S, Sade M, Fernández GA (1995) Fcc/hcp martensitic transformation in the Fe–Mn system: experimental study and thermodynamic analysis of phase stabilities. Met Trans A 26A:1957–1969 Cotes S, Sade M, Fernández GA (1995) Fcc/hcp martensitic transformation in the Fe–Mn system: experimental study and thermodynamic analysis of phase stabilities. Met Trans A 26A:1957–1969
31.
Zurück zum Zitat Khomenko OA, Khil'kevich IF, Zvigintseva GY (1974) Influence of a third component on the Néel point of iron-manganese invars. Fiz Metal Metalloved 37:1325–1326 Khomenko OA, Khil'kevich IF, Zvigintseva GY (1974) Influence of a third component on the Néel point of iron-manganese invars. Fiz Metal Metalloved 37:1325–1326
32.
Zurück zum Zitat Zhang YS, Lu X, Tian X, Quin Z (2002) Compositional dependence of the Néel transition, structural stability, magnetic properties and electrical resistivity in Fe–Mn–Al–Cr–Si alloys. Mater Sci Eng A 334:19–27 Zhang YS, Lu X, Tian X, Quin Z (2002) Compositional dependence of the Néel transition, structural stability, magnetic properties and electrical resistivity in Fe–Mn–Al–Cr–Si alloys. Mater Sci Eng A 334:19–27
33.
Zurück zum Zitat Huang W (1989) An assessment of the Fe–Mn system. Calphad 13:243–252 Huang W (1989) An assessment of the Fe–Mn system. Calphad 13:243–252
34.
Zurück zum Zitat Nyilas A, Weiss K, Grikurov G, Zoidze N (2006) Tensile, fracture, and fatigue crack growth rate behavior of high manganese steels. AIP Conf Proc 824(I):130–137 Nyilas A, Weiss K, Grikurov G, Zoidze N (2006) Tensile, fracture, and fatigue crack growth rate behavior of high manganese steels. AIP Conf Proc 824(I):130–137
35.
Zurück zum Zitat Marinelli P, Sade M, Baruj A, Guillermet AF (2000) Lattice parameters of metastable structures in quenched Fe–Mn alloys. Part. I. Experimental techniques, bcc and fcc phases. Z Metallkd 91:957–962 Marinelli P, Sade M, Baruj A, Guillermet AF (2000) Lattice parameters of metastable structures in quenched Fe–Mn alloys. Part. I. Experimental techniques, bcc and fcc phases. Z Metallkd 91:957–962
36.
Zurück zum Zitat Fu H, Xu S, Zhao H, Dong H, Xie J (2017) Cyclic stress-strain response of directionally solidified polycrystalline Cu–Al–Ni shape memory alloys. J Alloys Compd 714:154–159 Fu H, Xu S, Zhao H, Dong H, Xie J (2017) Cyclic stress-strain response of directionally solidified polycrystalline Cu–Al–Ni shape memory alloys. J Alloys Compd 714:154–159
37.
Zurück zum Zitat Sade M, La Roca P, De Castro Bubani F, Lovey FC, Torra V, Yawny A (2015) Pseudoelastic cycling between austenite, 18R and 6R phases in CuAlBe single crystals. Mater Today Proc 2(Suppl. 3):S719–S722 Sade M, La Roca P, De Castro Bubani F, Lovey FC, Torra V, Yawny A (2015) Pseudoelastic cycling between austenite, 18R and 6R phases in CuAlBe single crystals. Mater Today Proc 2(Suppl. 3):S719–S722
38.
Zurück zum Zitat Zotov N, Pfund M, Polatidis E, Mark AF, Mittemeijer EJ (2017) Change of transformation mechanism during pseudoelastic cycling of NiTi shape memory alloys. Mater Sci Eng A 682:178–191 Zotov N, Pfund M, Polatidis E, Mark AF, Mittemeijer EJ (2017) Change of transformation mechanism during pseudoelastic cycling of NiTi shape memory alloys. Mater Sci Eng A 682:178–191
39.
Zurück zum Zitat Isola L, La Roca P, Sobrero C, Fuster V, Vermaut P, Malarría J (2016) Study of the loadbiased martensitic transformation strain and stability of Ni50 − x-Ti-Cox strips obtained by twin-roll and standard casting techniques. Mater Des 107:511–519 Isola L, La Roca P, Sobrero C, Fuster V, Vermaut P, Malarría J (2016) Study of the loadbiased martensitic transformation strain and stability of Ni50 − x-Ti-Cox strips obtained by twin-roll and standard casting techniques. Mater Des 107:511–519
40.
Zurück zum Zitat Omori T, Ando K, Okano M, Xu X, Tanaka Y, Ohnuma I, Kainuma R, Ishida K (2011) Superelastic effect in polycrystalline ferrous alloys. Science 333:68–71 Omori T, Ando K, Okano M, Xu X, Tanaka Y, Ohnuma I, Kainuma R, Ishida K (2011) Superelastic effect in polycrystalline ferrous alloys. Science 333:68–71
41.
Zurück zum Zitat La Roca P, Baruj A, Sobrero CE, Malarria JA, Sade M (2017) Nanoprecipitation effects on phase stability of Fe–Mn–Al–Ni alloys. J Alloy Compd 708:422–427 La Roca P, Baruj A, Sobrero CE, Malarria JA, Sade M (2017) Nanoprecipitation effects on phase stability of Fe–Mn–Al–Ni alloys. J Alloy Compd 708:422–427
42.
Zurück zum Zitat Rawers JC (2008) Alloying effects on the microstructure and phase stability of Fe–Cr–Mn steels. J Mater Sci 43:3618–3624 Rawers JC (2008) Alloying effects on the microstructure and phase stability of Fe–Cr–Mn steels. J Mater Sci 43:3618–3624
43.
Zurück zum Zitat Reeh S, Kasprzak M, Klusmann CD, Stalf F, Music D, Ekholm M, Abrikosov IA, Schneider JM (2013) Elastic properties of fcc Fe–Mn–X (X= Cr Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations. J Phys Condens Matter 25:245401 Reeh S, Kasprzak M, Klusmann CD, Stalf F, Music D, Ekholm M, Abrikosov IA, Schneider JM (2013) Elastic properties of fcc Fe–Mn–X (X= Cr Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations. J Phys Condens Matter 25:245401
44.
Zurück zum Zitat Tamarat K, Stambouli V, Bouraoui T, Dubois B (1991) Structural study of Fe–Mn–Si and Fe–Mn–Cr shape memory steels. J Phys IV 1(C4):347–353 Tamarat K, Stambouli V, Bouraoui T, Dubois B (1991) Structural study of Fe–Mn–Si and Fe–Mn–Cr shape memory steels. J Phys IV 1(C4):347–353
45.
Zurück zum Zitat Malamud F, Guerrero LM, La Roca P, Sade M, Baruj A (2018) Role of Mn and Cr on structural parameters and strain energy during FCC–HCP martensitic transformation in Fe–Mn–Cr shape memory alloys. Mater Des 139:314–323 Malamud F, Guerrero LM, La Roca P, Sade M, Baruj A (2018) Role of Mn and Cr on structural parameters and strain energy during FCC–HCP martensitic transformation in Fe–Mn–Cr shape memory alloys. Mater Des 139:314–323
46.
Zurück zum Zitat Marinelli P, Baruj A, Guillermet AF, Sade M (2001) Lattice parameters of metastable structures in quenched Fe–Mn alloys. Part II: hcp phase. Z Metallkd 92:489–493 Marinelli P, Baruj A, Guillermet AF, Sade M (2001) Lattice parameters of metastable structures in quenched Fe–Mn alloys. Part II: hcp phase. Z Metallkd 92:489–493
47.
Zurück zum Zitat Marinelli P, Sade M, Fernández GA (2002) On the structural changes accompanying the fcc/hcp martensitic transformation in Fe–Mn–Co alloys. Scr Mater 46:805–810 Marinelli P, Sade M, Fernández GA (2002) On the structural changes accompanying the fcc/hcp martensitic transformation in Fe–Mn–Co alloys. Scr Mater 46:805–810
48.
Zurück zum Zitat Malamud F, Castro F, Guerrero LM, La Roca P, Sade M, Baruj A (2020) High-precision face-centered cubic-heagonal close-packed volume-change determination in high-Mn steels by X-ray diffraction data refinements. J Appl Cryst 53:34–44 Malamud F, Castro F, Guerrero LM, La Roca P, Sade M, Baruj A (2020) High-precision face-centered cubic-heagonal close-packed volume-change determination in high-Mn steels by X-ray diffraction data refinements. J Appl Cryst 53:34–44
49.
Zurück zum Zitat Kaufman L, Cohen M (1958) Thermodynamics and kinetics of martensitic transformations. Prog Met Phys 7:165–246 Kaufman L, Cohen M (1958) Thermodynamics and kinetics of martensitic transformations. Prog Met Phys 7:165–246
50.
Zurück zum Zitat Guerrero LM, La Roca P, Malamud F, Baruj A, Sade M (2019) Experimental determination of the driving force of the fcc–hcp martensitic transformation and the stacking fault energy in high-Mn Fe–Mn–Cr steels. J Alloys Compd 797:237–245 Guerrero LM, La Roca P, Malamud F, Baruj A, Sade M (2019) Experimental determination of the driving force of the fcc–hcp martensitic transformation and the stacking fault energy in high-Mn Fe–Mn–Cr steels. J Alloys Compd 797:237–245
51.
Zurück zum Zitat Martin JW, Doherty RD, Cantor B (1997) Stability of microstructure in metallic systems, Cambridge solid state science series. Cambridge University Press, Cambridge Martin JW, Doherty RD, Cantor B (1997) Stability of microstructure in metallic systems, Cambridge solid state science series. Cambridge University Press, Cambridge
52.
Zurück zum Zitat Nakano J, Jacques PJ (2010) Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe–Mn and Fe–Mn–C systems. CALPHAD 34:167–175 Nakano J, Jacques PJ (2010) Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe–Mn and Fe–Mn–C systems. CALPHAD 34:167–175
53.
Zurück zum Zitat Lee YK, Choi CS (2000) Driving force for ϒ→ε martensitic transformation and stacking fault: energy of ϒ in Fe–Mn binary system. Metall Mater Trans A 31A:355–360 Lee YK, Choi CS (2000) Driving force for ϒ→ε martensitic transformation and stacking fault: energy of ϒ in Fe–Mn binary system. Metall Mater Trans A 31A:355–360
54.
Zurück zum Zitat Baruj A, Fernández Guillermet A, Sade M (1999) Effects of thermal cycling and plastic deformation upon the Gibbs energy barriers to martensitic transformation in Fe–Mn and Fe–Mn–Co alloys. Mater Sci Eng A 273–275:507–511 Baruj A, Fernández Guillermet A, Sade M (1999) Effects of thermal cycling and plastic deformation upon the Gibbs energy barriers to martensitic transformation in Fe–Mn and Fe–Mn–Co alloys. Mater Sci Eng A 273–275:507–511
55.
Zurück zum Zitat Olson GB, Cohen M (1976) A general mechanism of martensitic nucleation: part I. General concepts and the FCC→ HCP transformation. Metall Trans A 7:1897–1904 Olson GB, Cohen M (1976) A general mechanism of martensitic nucleation: part I. General concepts and the FCC→ HCP transformation. Metall Trans A 7:1897–1904
56.
Zurück zum Zitat Ghosh G, Olson GB (2001) Computational thermodynamics and the kinetics of martensitic transformation. J Phase Equilib 22(3):199 Ghosh G, Olson GB (2001) Computational thermodynamics and the kinetics of martensitic transformation. J Phase Equilib 22(3):199
57.
Zurück zum Zitat Palumbo M (2008) Thermodynamics of martensitic transformations in the framework of the CALPHAD approach. CALPHAD 32:693–708 Palumbo M (2008) Thermodynamics of martensitic transformations in the framework of the CALPHAD approach. CALPHAD 32:693–708
58.
Zurück zum Zitat Pisarik ST, Aken DCV (2016) Thermodynamic driving force of the γ → ε transformation and resulting Ms temperature in high-Mn steels. Metall Mater Trans A 47:1009–1018 Pisarik ST, Aken DCV (2016) Thermodynamic driving force of the γ → ε transformation and resulting Ms temperature in high-Mn steels. Metall Mater Trans A 47:1009–1018
59.
Zurück zum Zitat Mertinger V, Benke M, Nagy E, Pataki T (2014) Reversible characteristics and cycling effects of the martensitic transformations in Fe–Mn–Cr TWIP/TRIP steels. J Mater Eng Perform 23:2347–2350 Mertinger V, Benke M, Nagy E, Pataki T (2014) Reversible characteristics and cycling effects of the martensitic transformations in Fe–Mn–Cr TWIP/TRIP steels. J Mater Eng Perform 23:2347–2350
60.
Zurück zum Zitat Baruj A, Cotes S, Sade M, Guillermet FA (1996) Effects of thermal cycling on the fcc/hcp martensitic transformation temperatures in Fe–Mn alloys. Z Metallkd 87:10 Baruj A, Cotes S, Sade M, Guillermet FA (1996) Effects of thermal cycling on the fcc/hcp martensitic transformation temperatures in Fe–Mn alloys. Z Metallkd 87:10
61.
Zurück zum Zitat Baruj A, Troiani HE, Sade M, Guillermet FA (2000) Effects of thermal cycling on the fcc/hcp martensitic transformation temperatures in the Fe–Mn system: Part II. TEM study of the microstructural changes. Philos Mag A 80:2537–2548 Baruj A, Troiani HE, Sade M, Guillermet FA (2000) Effects of thermal cycling on the fcc/hcp martensitic transformation temperatures in the Fe–Mn system: Part II. TEM study of the microstructural changes. Philos Mag A 80:2537–2548
62.
Zurück zum Zitat Krishnan RV, Delaey L, Tas H, Warlimont H (1974) Thermoplasticity, pseudoelasticity and the memory effects associated with martensitic transformations—part 2 The macroscopic mechanical behavior. J Mater Sci 9(9):1536–1544 Krishnan RV, Delaey L, Tas H, Warlimont H (1974) Thermoplasticity, pseudoelasticity and the memory effects associated with martensitic transformations—part 2 The macroscopic mechanical behavior. J Mater Sci 9(9):1536–1544
63.
Zurück zum Zitat Baruj A, Bertolino G, Troiani HE (2010) Temperature dependence of critical stress and pseudoelasticity in Fe–Mn–Si–Cr pre-rolled alloy. J Alloys Compd 502:54–58 Baruj A, Bertolino G, Troiani HE (2010) Temperature dependence of critical stress and pseudoelasticity in Fe–Mn–Si–Cr pre-rolled alloy. J Alloys Compd 502:54–58
64.
Zurück zum Zitat Otsuka H, Nakajima K, Maruyama T (2000) Superelastic behavior of Fe–Mn–Si–Cr shape memory alloy coil. Mater Trans JIM 41:547–549 Otsuka H, Nakajima K, Maruyama T (2000) Superelastic behavior of Fe–Mn–Si–Cr shape memory alloy coil. Mater Trans JIM 41:547–549
65.
Zurück zum Zitat Matsumura O, Sumi T, Tamura N, Sato K, Furukawa T, Otsukka H (2000) Pseudoelasticity in an Fe–28Mn–6Si–5Cr shape memory alloy. Mater Sci Eng A 279:201–206 Matsumura O, Sumi T, Tamura N, Sato K, Furukawa T, Otsukka H (2000) Pseudoelasticity in an Fe–28Mn–6Si–5Cr shape memory alloy. Mater Sci Eng A 279:201–206
66.
Zurück zum Zitat Sawaguchi T, Kikuchi T, Kajiwara S (2005) The pseudoelastic behavior of Fe–Mn–Si-based shape memory alloys containing Nb and C. Smart Mater Struct 14:S317–S322 Sawaguchi T, Kikuchi T, Kajiwara S (2005) The pseudoelastic behavior of Fe–Mn–Si-based shape memory alloys containing Nb and C. Smart Mater Struct 14:S317–S322
67.
Zurück zum Zitat Druker A, Vermaut P, Malarría J (2018) The shape recovery conditions for Fe–Mn–Si alloys: an interplay between martensitic transformation and plasticity. Mater Charact 139:319–327 Druker A, Vermaut P, Malarría J (2018) The shape recovery conditions for Fe–Mn–Si alloys: an interplay between martensitic transformation and plasticity. Mater Charact 139:319–327
68.
Zurück zum Zitat Druker A, La Roca P, Vermaut P, Ochin P, Malarría J (2012) Microstructure and shape memory properties of Fe–15Mn–5Si–9Cr–5Ni melt spun ribbons. Mater Sci Eng A 556:936–945 Druker A, La Roca P, Vermaut P, Ochin P, Malarría J (2012) Microstructure and shape memory properties of Fe–15Mn–5Si–9Cr–5Ni melt spun ribbons. Mater Sci Eng A 556:936–945
69.
Zurück zum Zitat Druker A, La Roca P, Vermaut P, Ochin P, Malarría J (2013) The shape memory effect in melt spun Fe–15Mn–5Si–9Cr–5Ni alloys. Mater Sci Forum 738–739:247–251 Druker A, La Roca P, Vermaut P, Ochin P, Malarría J (2013) The shape memory effect in melt spun Fe–15Mn–5Si–9Cr–5Ni alloys. Mater Sci Forum 738–739:247–251
70.
Zurück zum Zitat Nevin BS, Yakuphanoglu F (2013) The effects of Cr on isothermal oxidation behavior of Fe–30Mn–6Si alloy. Thermochim Acta 560:43–46 Nevin BS, Yakuphanoglu F (2013) The effects of Cr on isothermal oxidation behavior of Fe–30Mn–6Si alloy. Thermochim Acta 560:43–46
Metadaten
Titel
A Short Review on the Effect of Cr on the fcc–hcp Phase Transition in Fe–Mn-Based Alloys
verfasst von
L. M. Guerrero
P. La Roca
F. Malamud
A. Baruj
M. Sade
Publikationsdatum
18.05.2020
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 2/2020
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-020-00285-z

Weitere Artikel der Ausgabe 2/2020

Shape Memory and Superelasticity 2/2020 Zur Ausgabe

Special Issue: A Tribute to Prof. Dr. Gunther Eggeler, Invited Paper

Functional and Structural Fatigue of Pseudoelastic NiTi: Global Vs Local Thermo-Mechanical Response

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.