Skip to main content
Erschienen in:

09.06.2021

A Short-term Traffic Speed Prediction Model Based on LSTM Networks

verfasst von: Yu-Ling Hsueh, Yu-Ren Yang

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To successfully deploy an intelligent transportation system, it is essential to construct an effective method of traffic speed prediction. Recently, due to the advancements in sensor technology, traffic data have experienced explosive growth. It is therefore a challenge to construct an efficient model with highly accurate predictions. To improve the accuracy and the efficiency of short-term traffic predictions, we propose a prediction model based on deep learning approaches. We use a long short-term memory (LSTM) network to analyze sequential sensor data to predict the car speed of the next time interval on the freeway. Unlike the traditional model that only considers the changes in traffic speed which is used to derive the temporal and spatial features from the prediction road section, we mainly consider the features of the number of the most representative car types and the traffic speed variation of the front road segment that is ahead of the prediction road segment in addition to the number of cars, the road occupancy, and the traffic speed latency to successfully learn and capture the hidden patterns from the sensor data so as to improve the prediction accuracy. To the best of our knowledge, very few investigations have been conducted to consider the correlation between car speed and car type for a prediction model. Moreover, our extensive experiments demonstrate that the proposed method for traffic speed prediction has achieved high accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
3.
Zurück zum Zitat Ahmed, M.S., Cook, A.R.: Analysis of freeway traffic time-series data by using Box–Jenkins techniques. Transportation Research Record (722):1–9 (1979) Ahmed, M.S., Cook, A.R.: Analysis of freeway traffic time-series data by using Box–Jenkins techniques. Transportation Research Record (722):1–9 (1979)
4.
Zurück zum Zitat Bezuglov, A., Comert, G.: Short-term freeway traffic parameter prediction: Application of grey system theory models. Expert Syst. Appl. 62, 284–292 (2016)CrossRef Bezuglov, A., Comert, G.: Short-term freeway traffic parameter prediction: Application of grey system theory models. Expert Syst. Appl. 62, 284–292 (2016)CrossRef
6.
Zurück zum Zitat Wang, Y., Lu, G., Chen, P., Ding, C., Sun, J., Cai, P.: A spatiotemporal cor- relative k-nearest neighbor model for short-term traffic multistep forecasting. Transportation Research Part C Emerging Technologies 62, 21–34 (2016)CrossRef Wang, Y., Lu, G., Chen, P., Ding, C., Sun, J., Cai, P.: A spatiotemporal cor- relative k-nearest neighbor model for short-term traffic multistep forecasting. Transportation Research Part C Emerging Technologies 62, 21–34 (2016)CrossRef
7.
Zurück zum Zitat Jeong, Y.S., Jeong, M.K., Castro-Neto, M.: Online-svr for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst. Appl. 36(3), 6164–6173 (2009)CrossRef Jeong, Y.S., Jeong, M.K., Castro-Neto, M.: Online-svr for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst. Appl. 36(3), 6164–6173 (2009)CrossRef
8.
Zurück zum Zitat Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS Workshop on Deep Learning (2014) Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS Workshop on Deep Learning (2014)
9.
Zurück zum Zitat Davis, G.A., Nihan, N.L.: Nonparametric regression and short-term freeway traffic forecasting. J. Transp. Eng. 117(2), 178–1888 (1991)CrossRef Davis, G.A., Nihan, N.L.: Nonparametric regression and short-term freeway traffic forecasting. J. Transp. Eng. 117(2), 178–1888 (1991)CrossRef
10.
Zurück zum Zitat Dharia, A., Adeli, H.: Neural network model for rapid forecasting of freeway link travel time, vol. 16 (2003) Dharia, A., Adeli, H.: Neural network model for rapid forecasting of freeway link travel time, vol. 16 (2003)
11.
Zurück zum Zitat Karlaftis, M.G., Vlahogianni, E.I., Golias, J.C.: Optimized and metaoptimized neural networks for short-term traffic flow prediction: A genetic approach. Transp. Res. C, Emerging Technol. 13(3), 211–234 (2005)CrossRef Karlaftis, M.G., Vlahogianni, E.I., Golias, J.C.: Optimized and metaoptimized neural networks for short-term traffic flow prediction: A genetic approach. Transp. Res. C, Emerging Technol. 13(3), 211–234 (2005)CrossRef
12.
Zurück zum Zitat Liu, F., Yang, H., Yin, Z., Ran, B.: Online recursive algorithm for shortterm traffic prediction. Transp. Res Rec. 1879, 1–8 (2004)CrossRef Liu, F., Yang, H., Yin, Z., Ran, B.: Online recursive algorithm for shortterm traffic prediction. Transp. Res Rec. 1879, 1–8 (2004)CrossRef
13.
Zurück zum Zitat Hochreiter, S, Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef Hochreiter, S, Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef
14.
Zurück zum Zitat Song, G., Hong, H., Huang, W.: Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans. Intell. Transport. Syst. 15(5), 2191–2201 (2014)CrossRef Song, G., Hong, H., Huang, W.: Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans. Intell. Transport. Syst. 15(5), 2191–2201 (2014)CrossRef
15.
Zurück zum Zitat Kamarianakis, Y., Prastacos, P.: Forecasting traffic flow conditions in an urban network—comparison of multivariate and univariate approaches. Transp. Res. Rec. 1857, 74–84 (2003)CrossRef Kamarianakis, Y., Prastacos, P.: Forecasting traffic flow conditions in an urban network—comparison of multivariate and univariate approaches. Transp. Res. Rec. 1857, 74–84 (2003)CrossRef
16.
Zurück zum Zitat Lee, S., Fambro, D: Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting. Transp. Res. Rec. 1678, 179–188 (1999)CrossRef Lee, S., Fambro, D: Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting. Transp. Res. Rec. 1678, 179–188 (1999)CrossRef
17.
Zurück zum Zitat Levin, M., Tsao, Y.-D.: On forecasting freeway occupancies and volumes. Transp. Res. Rec. 773, 47–49 (1980) Levin, M., Tsao, Y.-D.: On forecasting freeway occupancies and volumes. Transp. Res. Rec. 773, 47–49 (1980)
18.
Zurück zum Zitat Sharma, S., Zhong, M., Lingras, P.: Prediction of recreational travel using genetically designed regression and time-delay neural network models. Transport. Res. Record 13(1), 435–446 (2002) Sharma, S., Zhong, M., Lingras, P.: Prediction of recreational travel using genetically designed regression and time-delay neural network models. Transport. Res. Record 13(1), 435–446 (2002)
19.
Zurück zum Zitat Duan, Y., Kang, W., Lv, Y.: Traffic flow prediction with big data: A deep learning approach. IEEE Trans. Intell. Trans.. Syst. 16(2), 865–873 (2015) Duan, Y., Kang, W., Lv, Y.: Traffic flow prediction with big data: A deep learning approach. IEEE Trans. Intell. Trans.. Syst. 16(2), 865–873 (2015)
20.
Zurück zum Zitat Dougherty, M., vander Voort, M., Watson, S.: Combining kohonen maps with arima time series models to forecast traffic flow. Transp. Res. C, Emerging Technol. 4(5), 307–318 (1996)CrossRef Dougherty, M., vander Voort, M., Watson, S.: Combining kohonen maps with arima time series models to forecast traffic flow. Transp. Res. C, Emerging Technol. 4(5), 307–318 (1996)CrossRef
21.
Zurück zum Zitat Tao, Z., Wang, Y., Ma, X.: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transport. Res. C Emerging Technol. 54, 187–197 (2015)CrossRef Tao, Z., Wang, Y., Ma, X.: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transport. Res. C Emerging Technol. 54, 187–197 (2015)CrossRef
22.
Zurück zum Zitat Yu, H., Wang, Y., Ma, X.: Large-scale transportation network congestion evolution prediction using deep learning theory. PLoS One 10(3), 1–17 (2015) Yu, H., Wang, Y., Ma, X.: Large-scale transportation network congestion evolution prediction using deep learning theory. PLoS One 10(3), 1–17 (2015)
23.
Zurück zum Zitat Urbanik II, T., Messer, C.: Short-term freeway traffic volume forecasting using radial basis function neural network. Transport. Res. Record 1651(1), 39–47 (1998)CrossRef Urbanik II, T., Messer, C.: Short-term freeway traffic volume forecasting using radial basis function neural network. Transport. Res. Record 1651(1), 39–47 (1998)CrossRef
24.
Zurück zum Zitat Okutani, I., Stephanedes, Y.J.: Dynamic prediction of traffic volume through kalman filtering theory. Trans. Res. B Methodol. 18(1), 1–11 (1984)CrossRef Okutani, I., Stephanedes, Y.J.: Dynamic prediction of traffic volume through kalman filtering theory. Trans. Res. B Methodol. 18(1), 1–11 (1984)CrossRef
25.
Zurück zum Zitat Park, B.: Hybrid neuro-fuzzy application in short-term freeway traffic volume forecasting. Transp. Res. Rec. 1802, 190–196 (2002)CrossRef Park, B.: Hybrid neuro-fuzzy application in short-term freeway traffic volume forecasting. Transp. Res. Rec. 1802, 190–196 (2002)CrossRef
26.
Zurück zum Zitat Rilett Laurence, R., Han, G., Park, D.: Spectral basis neural networks for real-time travel time forecasting. J. Transp. Eng. 125(125), 515–523 (1999) Rilett Laurence, R., Han, G., Park, D.: Spectral basis neural networks for real-time travel time forecasting. J. Transp. Eng. 125(125), 515–523 (1999)
27.
Zurück zum Zitat Rilett Laurence, R., Park, D.: Forecasting freeway link travel times with a multilayer feedforward neural network. Comput.-Aided Infrastruct. Eng. 14(5), 357–367 (1999)CrossRef Rilett Laurence, R., Park, D.: Forecasting freeway link travel times with a multilayer feedforward neural network. Comput.-Aided Infrastruct. Eng. 14(5), 357–367 (1999)CrossRef
28.
Zurück zum Zitat Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28, ICML’13, page III–1310–III–1318. JMLR.org (2013) Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28, ICML’13, page III–1310–III–1318. JMLR.org (2013)
29.
Zurück zum Zitat Ishak, S., Qi, Y.: A hidden markov model for short term prediction of traffic conditions on freeways. Transp. Res. Part C: Emerg. Technol. 43, 95–111 (2014)CrossRef Ishak, S., Qi, Y.: A hidden markov model for short term prediction of traffic conditions on freeways. Transp. Res. Part C: Emerg. Technol. 43, 95–111 (2014)CrossRef
30.
Zurück zum Zitat Qi, Y., Ishak, S.: Stochastic approach for short-term freeway traffic prediction during peak periods. IEEE Trans. Intell Transp. Syst. 14(2), 660–672 (2013)CrossRef Qi, Y., Ishak, S.: Stochastic approach for short-term freeway traffic prediction during peak periods. IEEE Trans. Intell Transp. Syst. 14(2), 660–672 (2013)CrossRef
31.
Zurück zum Zitat Zhang S. , Sun, C., Guoqiang, Y.: A bayesian network approach to traffic flow forecasting. IEEE Intell. Transp. Syst. Mag. 7(1), 124–132 (2006)CrossRef Zhang S. , Sun, C., Guoqiang, Y.: A bayesian network approach to traffic flow forecasting. IEEE Intell. Transp. Syst. Mag. 7(1), 124–132 (2006)CrossRef
32.
Zurück zum Zitat Smith, B.L. , Demetsky, M.J.: Short-term traffic flow prediction: Neural network approach. Transp. Res. Rec 1453, 98–104 (1994) Smith, B.L. , Demetsky, M.J.: Short-term traffic flow prediction: Neural network approach. Transp. Res. Rec 1453, 98–104 (1994)
33.
Zurück zum Zitat Research Board Transportation: Highway capacity manual, transp (2000) Research Board Transportation: Highway capacity manual, transp (2000)
34.
Zurück zum Zitat Lee, D.H., Zheng, W.Z., Shi, Q.X.: Short-term freeway traffic flow prediction: Bayesian combined neural network approach. J. Transp. Eng. 132(2), 114–121 (2006)CrossRef Lee, D.H., Zheng, W.Z., Shi, Q.X.: Short-term freeway traffic flow prediction: Bayesian combined neural network approach. J. Transp. Eng. 132(2), 114–121 (2006)CrossRef
35.
Zurück zum Zitat Wang, J., Shi, Q.: Short-term traffic speed forecasting hybrid model based on chaos–wavelet analysis-support vector machine theory. Transp. Res. Part C: Emerg. Technol. 27, 219–232 (2013)CrossRef Wang, J., Shi, Q.: Short-term traffic speed forecasting hybrid model based on chaos–wavelet analysis-support vector machine theory. Transp. Res. Part C: Emerg. Technol. 27, 219–232 (2013)CrossRef
36.
Zurück zum Zitat Williams, B.M.: Multivariate vehicular traffic flow prediction— evaluation of arimax modeling. Transp. Res. Rec. 1776, 194–200 (2001)CrossRef Williams, B.M.: Multivariate vehicular traffic flow prediction— evaluation of arimax modeling. Transp. Res. Rec. 1776, 194–200 (2001)CrossRef
37.
Zurück zum Zitat Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal arima process: Theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)CrossRef Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal arima process: Theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)CrossRef
38.
Zurück zum Zitat Zhang, Y., Ye Z, Xie, Y.: Short-term traffic volume forecasting using kalman filter with discrete wavelet decomposition (2006) Zhang, Y., Ye Z, Xie, Y.: Short-term traffic volume forecasting using kalman filter with discrete wavelet decomposition (2006)
39.
Zurück zum Zitat Castro-Neto, M.M., Jeong, Y.S., Byon, Y.J., Easa, S.M.: Supervised weighting-online learning algorithm for short-term traffic flow prediction. IEEE Trans. Intell Transp. Syst. 14(4), 1700–1707 (2013)CrossRef Castro-Neto, M.M., Jeong, Y.S., Byon, Y.J., Easa, S.M.: Supervised weighting-online learning algorithm for short-term traffic flow prediction. IEEE Trans. Intell Transp. Syst. 14(4), 1700–1707 (2013)CrossRef
40.
Zurück zum Zitat Liu, Y., Zhang, Y.: Traffic forecasting using least squares support vector machines. Transportmetrica 5(3), 193–213 (2009)MathSciNetCrossRef Liu, Y., Zhang, Y.: Traffic forecasting using least squares support vector machines. Transportmetrica 5(3), 193–213 (2009)MathSciNetCrossRef
41.
Zurück zum Zitat Chen, W., Wu, X., Chen, P.C., Liu, J., Zhao, Z.: Lstm network: a deep learning approach for short-term traffic forecast. IET Intel. Transp. Syst. 11, 68–75 (2017)CrossRef Chen, W., Wu, X., Chen, P.C., Liu, J., Zhao, Z.: Lstm network: a deep learning approach for short-term traffic forecast. IET Intel. Transp. Syst. 11, 68–75 (2017)CrossRef
Metadaten
Titel
A Short-term Traffic Speed Prediction Model Based on LSTM Networks
verfasst von
Yu-Ling Hsueh
Yu-Ren Yang
Publikationsdatum
09.06.2021
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 3/2021
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-021-00260-7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.