Skip to main content
Erschienen in: Journal of Computational Electronics 1/2018

03.10.2017

A signal calculation grid for quantum-dot cellular automata

verfasst von: Douglas Tougaw, Sami Khorbotly, Justin Szaday, Jeffrey D. Will

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The quantum-dot cellular automata (QCA) computing paradigm presents great promise as a potential strategy for future nanocomputing devices. Perhaps the greatest challenge facing the QCA architecture is finding a robust wire crossing strategy. In this paper, the recently introduced QCA signal distribution grid is extended to carry out generalized sum-of-products and product-of-sums calculations that are performed concurrently with signal distribution. The new signal calculation grid is capable of performing an arbitrary number of simultaneous programmable Boolean operations on an arbitrary number of inputs, and the time required to perform all of these parallel calculations is just seven clock cycles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62(7), 714–716 (1993)CrossRef Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62(7), 714–716 (1993)CrossRef
2.
Zurück zum Zitat Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum-dot cells. J. Appl. Phys. 74(5), 3558–3566 (1993)CrossRef Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum-dot cells. J. Appl. Phys. 74(5), 3558–3566 (1993)CrossRef
3.
Zurück zum Zitat Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74(10), 6227–6233 (1993)CrossRef Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74(10), 6227–6233 (1993)CrossRef
4.
Zurück zum Zitat Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)CrossRef Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)CrossRef
5.
Zurück zum Zitat Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)CrossRef Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)CrossRef
6.
Zurück zum Zitat Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRef Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRef
7.
Zurück zum Zitat Wood, J.D., Tougaw, D.: Matrix multiplication using quantum-dot cellular automata to implement conventional microelectronics. IEEE Trans. Nanotechnol. 10(5), 1036–1042 (2011)CrossRef Wood, J.D., Tougaw, D.: Matrix multiplication using quantum-dot cellular automata to implement conventional microelectronics. IEEE Trans. Nanotechnol. 10(5), 1036–1042 (2011)CrossRef
8.
Zurück zum Zitat Hennessy, K., Lent, C.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. 19(B), 1752–1755 (2001)CrossRef Hennessy, K., Lent, C.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. 19(B), 1752–1755 (2001)CrossRef
9.
Zurück zum Zitat Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)CrossRef Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)CrossRef
10.
Zurück zum Zitat Tougaw, D.: A clocking strategy for scalable and fault-tolerant QDCA signal distribution in combinational and sequential devices. In: Anderson, N.G., Bhanja, S. (eds.) Field Coupled-Nanocomputing: Paradigms, Processes, and Perspectives. Springer, Berlin (2014) Tougaw, D.: A clocking strategy for scalable and fault-tolerant QDCA signal distribution in combinational and sequential devices. In: Anderson, N.G., Bhanja, S. (eds.) Field Coupled-Nanocomputing: Paradigms, Processes, and Perspectives. Springer, Berlin (2014)
11.
Zurück zum Zitat Anduwan, G.A., Padgett, B.D., Kuntzman, M., Hendrichsen, M.K., Sturzu, I., Khatun, M., Tougaw, P.D.: Fault-tolerance and thermal characteristics of quantum-dot cellular automata devices. J. Appl. Phys. 107, 114306 (2010)CrossRef Anduwan, G.A., Padgett, B.D., Kuntzman, M., Hendrichsen, M.K., Sturzu, I., Khatun, M., Tougaw, P.D.: Fault-tolerance and thermal characteristics of quantum-dot cellular automata devices. J. Appl. Phys. 107, 114306 (2010)CrossRef
12.
Zurück zum Zitat Khatun, M., Barclay, T., Sturzu, I., Tougaw, D.: Fault tolerance properties in quantum-dot cellular automata devices. J. Phys. D Appl. Phys. 39, 1489–1494 (2006)CrossRef Khatun, M., Barclay, T., Sturzu, I., Tougaw, D.: Fault tolerance properties in quantum-dot cellular automata devices. J. Phys. D Appl. Phys. 39, 1489–1494 (2006)CrossRef
13.
Zurück zum Zitat Khatun, M., Barclay, T., Sturzu, I., Tougaw, D.: Fault tolerance calculations for clocked quantum-dot cellular automata devices. J. Appl. Phys. 98, 094904 (2005)CrossRef Khatun, M., Barclay, T., Sturzu, I., Tougaw, D.: Fault tolerance calculations for clocked quantum-dot cellular automata devices. J. Appl. Phys. 98, 094904 (2005)CrossRef
14.
Zurück zum Zitat Khatun, M., Padgett, B.D., Anduwan, G.A., Sturzu, I., Tougaw, D.: Defect and temperature effects on complex quantum-dot cellular automata devices. J. Appl. Math. Phys. 1(2), 7 (2013)CrossRef Khatun, M., Padgett, B.D., Anduwan, G.A., Sturzu, I., Tougaw, D.: Defect and temperature effects on complex quantum-dot cellular automata devices. J. Appl. Math. Phys. 1(2), 7 (2013)CrossRef
15.
Zurück zum Zitat LaRue, M., Tougaw, D., Will, J.D.: Effect of stray charge in a QCA system: a validation of the intercellular Hartree approximation. IEEE Trans. Nanotechnol. 12(2), 225–233 (2013)CrossRef LaRue, M., Tougaw, D., Will, J.D.: Effect of stray charge in a QCA system: a validation of the intercellular Hartree approximation. IEEE Trans. Nanotechnol. 12(2), 225–233 (2013)CrossRef
16.
Zurück zum Zitat Chaudhary, A., Chen, D.Z., Hu, X.S., Whitton, K., Niemier, M., Ravichardran, R.: Eliminating wire crossings for molecular quantum-dot cellular automata implementation. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (2005) Chaudhary, A., Chen, D.Z., Hu, X.S., Whitton, K., Niemier, M., Ravichardran, R.: Eliminating wire crossings for molecular quantum-dot cellular automata implementation. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (2005)
17.
Zurück zum Zitat Smith, B., Lim, S.K.: QCA channel routing with wire crossing minimization. In: Proceedings of the Great Lakes Symposium on VLSI (2005) Smith, B., Lim, S.K.: QCA channel routing with wire crossing minimization. In: Proceedings of the Great Lakes Symposium on VLSI (2005)
18.
Zurück zum Zitat Chen, H., Lee, D.: On crossing minimization problem. IEEE Trans. Computer Aided Des. 17(5), 406–418 (1998)CrossRef Chen, H., Lee, D.: On crossing minimization problem. IEEE Trans. Computer Aided Des. 17(5), 406–418 (1998)CrossRef
19.
Zurück zum Zitat Chung, W.J., Smith, B., Lim, S.K.: QCA physical design with crossing minimization. In: Proceedings of the 2005 5th IEEE Conference on Nanotechnology (2005) Chung, W.J., Smith, B., Lim, S.K.: QCA physical design with crossing minimization. In: Proceedings of the 2005 5th IEEE Conference on Nanotechnology (2005)
20.
Zurück zum Zitat Vankamamidi, V., Ottavi, M., Lombardi, F.: Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(1), 34–44 (2008)CrossRefMATH Vankamamidi, V., Ottavi, M., Lombardi, F.: Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(1), 34–44 (2008)CrossRefMATH
21.
Zurück zum Zitat Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: Novel designs for thermally robust coplanar crossing in QCA. In: Proceedings of the Conference on Design, Automation and Test in Europe (2006) Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: Novel designs for thermally robust coplanar crossing in QCA. In: Proceedings of the Conference on Design, Automation and Test in Europe (2006)
22.
Zurück zum Zitat Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: QCA circuits for robust coplanar crossing. J. Electron. Test. 23, 193–210 (2007)CrossRef Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: QCA circuits for robust coplanar crossing. J. Electron. Test. 23, 193–210 (2007)CrossRef
23.
Zurück zum Zitat Graunke, C.R., Wheeler, D.I., Tougaw, D., Will, J.D.: Implementation of a crossbar network using quantum-dot cellular automata. IEEE Trans. Nanotechnol. 4(4), 435–440 (2005)CrossRef Graunke, C.R., Wheeler, D.I., Tougaw, D., Will, J.D.: Implementation of a crossbar network using quantum-dot cellular automata. IEEE Trans. Nanotechnol. 4(4), 435–440 (2005)CrossRef
24.
Zurück zum Zitat Tougaw, D., Khatun, M.: A scalable signal distribution network for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 12, 215–224 (2013)CrossRef Tougaw, D., Khatun, M.: A scalable signal distribution network for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 12, 215–224 (2013)CrossRef
25.
Zurück zum Zitat Hast, H., Khorbotly, S., Tougaw, D.: A signal distribution network for sequential quantum-dot cellular automata systems. IEEE Trans. Nanotechnol. 14, 1–9 (2015)CrossRef Hast, H., Khorbotly, S., Tougaw, D.: A signal distribution network for sequential quantum-dot cellular automata systems. IEEE Trans. Nanotechnol. 14, 1–9 (2015)CrossRef
26.
Zurück zum Zitat Tougaw, D., Szaday, J., Will, J.D.: A signal distribution grid for quantum-dot cellular automata. J. Comput. Electron. 15(2), 446–454 (2016)CrossRef Tougaw, D., Szaday, J., Will, J.D.: A signal distribution grid for quantum-dot cellular automata. J. Comput. Electron. 15(2), 446–454 (2016)CrossRef
27.
Zurück zum Zitat Wakerly, J.E.: Digital Design: Principles and Practices, 3rd edn. Prentice-Hall, Upper Saddle River (1999)MATH Wakerly, J.E.: Digital Design: Principles and Practices, 3rd edn. Prentice-Hall, Upper Saddle River (1999)MATH
Metadaten
Titel
A signal calculation grid for quantum-dot cellular automata
verfasst von
Douglas Tougaw
Sami Khorbotly
Justin Szaday
Jeffrey D. Will
Publikationsdatum
03.10.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2018
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-1075-7

Weitere Artikel der Ausgabe 1/2018

Journal of Computational Electronics 1/2018 Zur Ausgabe

Neuer Inhalt