Skip to main content


Weitere Artikel dieser Ausgabe durch Wischen aufrufen

09.06.2020 | Original Paper | Ausgabe 8/2020

Acta Mechanica 8/2020

A simple and practical representation of compatibility condition derived using a QR decomposition of the deformation gradient

Acta Mechanica > Ausgabe 8/2020
Sandipan Paul, Alan D. Freed
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


This paper examines a condition for the existence and uniqueness of a finite deformation field whenever a Gram–Schmidt (QR) factorization of the deformation gradient \({\mathbf {F}}\) is used. First, a compatibility condition is derived, provided that a right Cauchy–Green tensor \({\mathbf {C}} = {\mathbf {F}}^T {\mathbf {F}}\) is prescribed. It is well-known that under this condition a vanishing of the Riemann curvature tensor \({\mathbb {R}}\) ensures compatibility of a finite deformation field. We derive a restriction imposed on Laplace stretch \(\varvec{{\mathcal {U}}}\), arising from a QR decomposition of the deformation gradient, through this compatibility condition. The derived condition on Laplace stretch is unambiguous, because a Cholesky factorization of the right Cauchy–Green tensor ensures the existence of a unique Laplace stretch. Although a vanishing of the Riemann curvature tensor provides a necessary and sufficient compatibility condition from a purely geometric point of view, this condition lacks a direct physical interpretation in a sense that one cannot identify the restrictions imposed by this condition on a quantity that can be readily measured from experiments. On the other hand, our compatibility condition restricts dependence of components of a Laplace stretch on certain spatial variables in a reference configuration. Unlike the symmetric right Cauchy–Green stretch tensor \({\mathbf {U}}\) obtained from a traditional polar decomposition of \({\mathbf {F}}\), the components of Laplace stretch can be measured from experiments. Thus, this newly derived compatibility condition provides a physical meaning to the somewhat abstract idea of the traditionally used compatibility condition, viz., a vanishing of the Riemann curvature tensor. Couplings between certain components of the Laplace stretch representing shear and elongation play a crucial role in deriving this condition. Finally, implications of this compatibility condition are discussed.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Über diesen Artikel

Weitere Artikel der Ausgabe 8/2020

Acta Mechanica 8/2020 Zur Ausgabe

Premium Partner


    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.