Skip to main content
Erschienen in: Cellulose 12/2019

01.07.2019 | Original Research

A simple method for controlling the bacterial cellulose nanofiber density in 3D scaffolds and its effect on the cell behavior

verfasst von: Baoxiu Wang, Xiangguo Lv, Zhe Li, Yongbo Yao, Zhiyong Yan, Junlu Sheng, Shiyan Chen

Erschienen in: Cellulose | Ausgabe 12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we provide a simple method to control cellulose nanofiber density inside three-dimensional (3D) gelatin/bacterial cellulose (Gel/BC) scaffold. Different cellulose nanofiber densities inside 3D scaffold were achieved by changing the bacterial density during cellulose biosynthesis. By increasing bacterial densities, Gel/BC scaffolds exhibited higher BC nanofiber density (average distance between cellulose nanofiber and fiber area ratio). And higher BC nanofiber density improved mechanical properties of scaffold, while the average pore size of scaffold was constant. Nanofiber density has been shown to direct cell behavior on 2D substrates. It is important to study that whether the BC nanofiber density can modulate the cell behavior in 3D scaffold. It is the first time to evaluate the effect of BC nanofiber density on cell behavior in 3D scaffold. Results revealed that higher BC nanofiber density in scaffold could facilitate adipose-derived stem cells (ADSCs) proliferation. Interestingly, ADSCs seeded in scaffolds with higher BC nanofiber density showed more spherical and smaller size which meant the potential preservation of ADSCs phenotype. Our findings highlight the importance of BC nanofiber density on cell behavior and provide new guidelines for the construction of tissue engineered scaffold for tissue regeneration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL, Shenoy VB, Burdick JA, Chen CS (2015) Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater 14:1262–1268CrossRefPubMedPubMedCentral Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL, Shenoy VB, Burdick JA, Chen CS (2015) Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater 14:1262–1268CrossRefPubMedPubMedCentral
Zurück zum Zitat Bean AC, Tuan RS (2015) Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Biomed Mater 10:015018CrossRefPubMedPubMedCentral Bean AC, Tuan RS (2015) Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Biomed Mater 10:015018CrossRefPubMedPubMedCentral
Zurück zum Zitat Berti FV, Rambo CR, Dias PF, Porto LM (2013) Nanofiber density determines endothelial cell behavior on hydrogel matrix. Mater Sci Eng, C 33:4684–4691CrossRef Berti FV, Rambo CR, Dias PF, Porto LM (2013) Nanofiber density determines endothelial cell behavior on hydrogel matrix. Mater Sci Eng, C 33:4684–4691CrossRef
Zurück zum Zitat Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of Nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromol 8:3697–3704CrossRef Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of Nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromol 8:3697–3704CrossRef
Zurück zum Zitat Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, Huebsch N, Lee H-p, Lippens E, Duda GN, Mooney DJ (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15:326–334CrossRefPubMed Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, Huebsch N, Lee H-p, Lippens E, Duda GN, Mooney DJ (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15:326–334CrossRefPubMed
Zurück zum Zitat Chen Y, Zhou X, Lin Q, Jiang D (2014) Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment. Cellulose 21:2679–2693CrossRef Chen Y, Zhou X, Lin Q, Jiang D (2014) Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment. Cellulose 21:2679–2693CrossRef
Zurück zum Zitat Chen H, Malheiro AdBFB, van Blitterswijk C, Mota C, Wieringa PA, Moroni L (2017) Direct writing electrospinning of scaffolds with multidimensional fiber architecture for hierarchical tissue engineering. ACS Appl Mater Interfaces 9:38187–38200CrossRefPubMedPubMedCentral Chen H, Malheiro AdBFB, van Blitterswijk C, Mota C, Wieringa PA, Moroni L (2017) Direct writing electrospinning of scaffolds with multidimensional fiber architecture for hierarchical tissue engineering. ACS Appl Mater Interfaces 9:38187–38200CrossRefPubMedPubMedCentral
Zurück zum Zitat Cosgrove BD, Mui KL, Driscoll TP, Caliari SR, Mehta KD, Assoian RK, Burdick JA, Mauck RL (2016) N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. Nat Mater 15:1297–1306CrossRefPubMedPubMedCentral Cosgrove BD, Mui KL, Driscoll TP, Caliari SR, Mehta KD, Assoian RK, Burdick JA, Mauck RL (2016) N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. Nat Mater 15:1297–1306CrossRefPubMedPubMedCentral
Zurück zum Zitat de Oliveira Magalhães P, Lopes AM, Mazzola PG, Rangel-Yagui C, Penna TCV, Pessoa A Jr (2007) Methods of endotoxin removal from biological preparations: a review. J Pharm Pharma Sci 10:388–404 de Oliveira Magalhães P, Lopes AM, Mazzola PG, Rangel-Yagui C, Penna TCV, Pessoa A Jr (2007) Methods of endotoxin removal from biological preparations: a review. J Pharm Pharma Sci 10:388–404
Zurück zum Zitat Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689CrossRef Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689CrossRef
Zurück zum Zitat Feng C, Xu YM, Fu Q, Zhu WD, Cui L, Chen J (2010) Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction. J Biomed Mater Res, Part A 94A:317–325CrossRef Feng C, Xu YM, Fu Q, Zhu WD, Cui L, Chen J (2010) Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction. J Biomed Mater Res, Part A 94A:317–325CrossRef
Zurück zum Zitat Fu Q, Deng CL, Zhao RY, Wang Y, Cao Y (2014) The effect of mechanical extension stimulation combined with epithelial cell sorting on outcomes of implanted tissue-engineered muscular urethras. Biomaterials 35:105–112CrossRefPubMed Fu Q, Deng CL, Zhao RY, Wang Y, Cao Y (2014) The effect of mechanical extension stimulation combined with epithelial cell sorting on outcomes of implanted tissue-engineered muscular urethras. Biomaterials 35:105–112CrossRefPubMed
Zurück zum Zitat Hirayama K, Okitsu T, Teramae H, Kiriya D, Onoe H, Takeuchi S (2013) Cellular building unit integrated with microstrand-shaped bacterial cellulose. Biomaterials 34:2421–2427CrossRefPubMed Hirayama K, Okitsu T, Teramae H, Kiriya D, Onoe H, Takeuchi S (2013) Cellular building unit integrated with microstrand-shaped bacterial cellulose. Biomaterials 34:2421–2427CrossRefPubMed
Zurück zum Zitat Kang HW, Tabata Y, Ikada Y (1999) Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 20:1339–1344CrossRefPubMed Kang HW, Tabata Y, Ikada Y (1999) Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 20:1339–1344CrossRefPubMed
Zurück zum Zitat Lai Y, Asthana A, Kisaalita WS (2011) Biomarkers for simplifying HTS 3D cell culture platforms for drug discovery: the case for cytokines. Drug Discov Today 16:293–297CrossRefPubMed Lai Y, Asthana A, Kisaalita WS (2011) Biomarkers for simplifying HTS 3D cell culture platforms for drug discovery: the case for cytokines. Drug Discov Today 16:293–297CrossRefPubMed
Zurück zum Zitat Li Z, Lv XG, Chen SY, Wang BX, Feng C, Xu YM, Wang HP (2016) Improved cell infiltration and vascularization of three-dimensional bacterial cellulose nanofibrous scaffolds by template biosynthesis. RSC Adv 6:42229–42239CrossRef Li Z, Lv XG, Chen SY, Wang BX, Feng C, Xu YM, Wang HP (2016) Improved cell infiltration and vascularization of three-dimensional bacterial cellulose nanofibrous scaffolds by template biosynthesis. RSC Adv 6:42229–42239CrossRef
Zurück zum Zitat Liu WG, Yao KD, Wang GC, Li HX (2000) Intrinsic fluorescence investigation on the change in conformation of cross-linked gelatin gel during volume phase transition. Polymer 41:7589–7592CrossRef Liu WG, Yao KD, Wang GC, Li HX (2000) Intrinsic fluorescence investigation on the change in conformation of cross-linked gelatin gel during volume phase transition. Polymer 41:7589–7592CrossRef
Zurück zum Zitat Luo J, Yang ST (2004) Effects of three-dimensional culturing in a fibrous matrix on cell cycle, apoptosis, and MAb production by hybridoma cells. Biotechnol Prog 20:306–315CrossRefPubMed Luo J, Yang ST (2004) Effects of three-dimensional culturing in a fibrous matrix on cell cycle, apoptosis, and MAb production by hybridoma cells. Biotechnol Prog 20:306–315CrossRefPubMed
Zurück zum Zitat Lv XG, Feng C, Liu YD, Peng XF, Chen SY, Xiao DD, Wang HP, Li Z, Xu YM, Lu MJ (2018) A smart bilayered scaffold supporting keratinocytes and muscle cells in micro/nano-scale for urethral reconstruction. Theranostics 8:3153–3163CrossRefPubMedPubMedCentral Lv XG, Feng C, Liu YD, Peng XF, Chen SY, Xiao DD, Wang HP, Li Z, Xu YM, Lu MJ (2018) A smart bilayered scaffold supporting keratinocytes and muscle cells in micro/nano-scale for urethral reconstruction. Theranostics 8:3153–3163CrossRefPubMedPubMedCentral
Zurück zum Zitat Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544CrossRefPubMedPubMedCentral Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544CrossRefPubMedPubMedCentral
Zurück zum Zitat Park S, Park J, Jo I, Cho SP, Sung D, Ryu S, Park M, Min KA, Kim J, Hong S, Hong BH, Kim BS (2015) In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials 58:93–102CrossRefPubMed Park S, Park J, Jo I, Cho SP, Sung D, Ryu S, Park M, Min KA, Kim J, Hong S, Hong BH, Kim BS (2015) In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials 58:93–102CrossRefPubMed
Zurück zum Zitat Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470CrossRefPubMed Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470CrossRefPubMed
Zurück zum Zitat Powell HM, Boyce ST (2008) Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes. J Biomed Mater Res, Part A 84A:1078–1086CrossRef Powell HM, Boyce ST (2008) Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes. J Biomed Mater Res, Part A 84A:1078–1086CrossRef
Zurück zum Zitat Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600CrossRefPubMed Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600CrossRefPubMed
Zurück zum Zitat Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2012) Advances in polymeric systems for tissue engineering and biomedical applications. Macromol Biosci 12:286–311CrossRefPubMed Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2012) Advances in polymeric systems for tissue engineering and biomedical applications. Macromol Biosci 12:286–311CrossRefPubMed
Zurück zum Zitat Schmidt D, Von Hochstetter AR (1995) The use of CD31 and collagen IV as vascular markers a study of 56 vascular lesions. Pathol Res Pract 191:410–414CrossRefPubMed Schmidt D, Von Hochstetter AR (1995) The use of CD31 and collagen IV as vascular markers a study of 56 vascular lesions. Pathol Res Pract 191:410–414CrossRefPubMed
Zurück zum Zitat Su K, Wang C (2015) Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 37(11):2139–2145CrossRefPubMed Su K, Wang C (2015) Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 37(11):2139–2145CrossRefPubMed
Zurück zum Zitat Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431CrossRefPubMed Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431CrossRefPubMed
Zurück zum Zitat Trappmann B, Baker BM, Polacheck WJ, Choi CK, Burdick JA, Chen CS (2017) Matrix degradability controls multicellularity of 3D cell migration. Nat Commun 8:1–8CrossRef Trappmann B, Baker BM, Polacheck WJ, Choi CK, Burdick JA, Chen CS (2017) Matrix degradability controls multicellularity of 3D cell migration. Nat Commun 8:1–8CrossRef
Zurück zum Zitat Walles T, Herden T, Haverich A, Mertsching H (2003) Influence of scaffold thickness and scaffold composition on bioartificial graft survival. Biomaterials 24:1233–1239CrossRefPubMed Walles T, Herden T, Haverich A, Mertsching H (2003) Influence of scaffold thickness and scaffold composition on bioartificial graft survival. Biomaterials 24:1233–1239CrossRefPubMed
Zurück zum Zitat Wang Y, Fu Q, Zhao RY, Deng CL (2014) Muscular tubes of urethra engineered from adipose-derived stem cells and polyglycolic acid mesh in a bioreactor. Biotechnol Lett 36:1909–1916CrossRefPubMed Wang Y, Fu Q, Zhao RY, Deng CL (2014) Muscular tubes of urethra engineered from adipose-derived stem cells and polyglycolic acid mesh in a bioreactor. Biotechnol Lett 36:1909–1916CrossRefPubMed
Zurück zum Zitat Wang BX, Huang CS, Chen SY, Xing XY, Zhang MH, Wu QK, Wang HP (2018) Hybrid scaffolds enhanced by nanofibers improve in vitro cell behavior for tissue regeneration. Cellulose 25:7113–7125CrossRef Wang BX, Huang CS, Chen SY, Xing XY, Zhang MH, Wu QK, Wang HP (2018) Hybrid scaffolds enhanced by nanofibers improve in vitro cell behavior for tissue regeneration. Cellulose 25:7113–7125CrossRef
Zurück zum Zitat Xie JW, Liu WY, MacEwan MR, Bridgman PC, Xia YN (2014) Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS Nano 8:1878–1885CrossRefPubMedPubMedCentral Xie JW, Liu WY, MacEwan MR, Bridgman PC, Xia YN (2014) Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS Nano 8:1878–1885CrossRefPubMedPubMedCentral
Zurück zum Zitat Xie J, Bao M, Bruekers SMC, Huck WTS (2017) Collagen gels with different fibrillar microarchitectures elicit different cellular responses. ACS Appl Mater Interfaces 9:19630–19637CrossRefPubMedPubMedCentral Xie J, Bao M, Bruekers SMC, Huck WTS (2017) Collagen gels with different fibrillar microarchitectures elicit different cellular responses. ACS Appl Mater Interfaces 9:19630–19637CrossRefPubMedPubMedCentral
Zurück zum Zitat Yin N, Chen SY, Li Z, Ouyang Y, Hu WL, Tang L, Zhang W, Zhou BH, Yang JX, Xu QS, Wang HP (2012) Porous bacterial cellulose prepared by a facile surfactant-assisted foaming method in azodicarbonamide-NaOH aqueous solution. Mater Lett 81:131–134CrossRef Yin N, Chen SY, Li Z, Ouyang Y, Hu WL, Tang L, Zhang W, Zhou BH, Yang JX, Xu QS, Wang HP (2012) Porous bacterial cellulose prepared by a facile surfactant-assisted foaming method in azodicarbonamide-NaOH aqueous solution. Mater Lett 81:131–134CrossRef
Zurück zum Zitat Yin N, Stilwell MD, Santos TMA, Wang HP, Weibel DB (2015) Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater 12:129–138CrossRefPubMed Yin N, Stilwell MD, Santos TMA, Wang HP, Weibel DB (2015) Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater 12:129–138CrossRefPubMed
Zurück zum Zitat Zaborowska M, Bodin A, Baeckdahl H, Popp J, Goldstein A, Gatenholm P (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547CrossRefPubMed Zaborowska M, Bodin A, Baeckdahl H, Popp J, Goldstein A, Gatenholm P (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547CrossRefPubMed
Zurück zum Zitat Zhang SC, Liu P, Chen L, Wang YJ, Wang ZG, Zhang B (2015) The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials 41:15–25CrossRefPubMed Zhang SC, Liu P, Chen L, Wang YJ, Wang ZG, Zhang B (2015) The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials 41:15–25CrossRefPubMed
Zurück zum Zitat Zhou CJ, Wu QL (2011) A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids Surf B Biointerfaces 84:155–162CrossRefPubMed Zhou CJ, Wu QL (2011) A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids Surf B Biointerfaces 84:155–162CrossRefPubMed
Metadaten
Titel
A simple method for controlling the bacterial cellulose nanofiber density in 3D scaffolds and its effect on the cell behavior
verfasst von
Baoxiu Wang
Xiangguo Lv
Zhe Li
Yongbo Yao
Zhiyong Yan
Junlu Sheng
Shiyan Chen
Publikationsdatum
01.07.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 12/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02602-x

Weitere Artikel der Ausgabe 12/2019

Cellulose 12/2019 Zur Ausgabe