Skip to main content
Erschienen in: Acta Mechanica Sinica 6/2018

01.08.2018 | Research Paper

A simulation-based study on longitudinal gust response of flexible flapping wings

verfasst von: Toshiyuki Nakata, Ryusuke Noda, Shinobu Kumagai, Hao Liu

Erschienen in: Acta Mechanica Sinica | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment. They generate and control aerodynamic forces by flapping their flexible wings. While the dynamic shape changes of their flapping wings are known to enhance the efficiency of their flight, they can also affect the stability of a flapping wing flyer under unpredictable disturbances by responding to the sudden changes of aerodynamic forces on the wing. In order to test the hypothesis, the gust response of flexible flapping wings is investigated numerically with a specific focus on the passive maintenance of aerodynamic forces by the wing flexibility. The computational model is based on a dynamic flight simulator that can incorporate the realistic morphology, the kinematics, the structural dynamics, the aerodynamics and the fluid–structure interactions of a hovering hawkmoth. The longitudinal gusts are imposed against the tethered model of a hovering hawkmoth with flexible flapping wings. It is found that the aerodynamic forces on the flapping wings are affected by the gust, because of the increase or decrease in relative wingtip velocity or kinematic angle of attack. The passive shape change of flexible wings can, however, reduce the changes in the magnitude and direction of aerodynamic forces by the gusts from various directions, except for the downward gust. Such adaptive response of the flexible structure to stabilise the attitude can be classified into the mechanical feedback, which works passively with minimal delay, and is of great importance to the design of bio-inspired flapping wings for micro-air vehicles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Watkins, S., Milbank, J., Loxton, B.J., et al.: Atmospheric winds and their implications for micro air vehicles. AIAA J. 44, 2591–2600 (2006)CrossRef Watkins, S., Milbank, J., Loxton, B.J., et al.: Atmospheric winds and their implications for micro air vehicles. AIAA J. 44, 2591–2600 (2006)CrossRef
2.
Zurück zum Zitat Combes, S.A., Dudley, R.: Turbulence-driven instabilities limit insect flight performance. Proc. Natl. Acad. Sci. USA 106, 9105–9108 (2009)CrossRef Combes, S.A., Dudley, R.: Turbulence-driven instabilities limit insect flight performance. Proc. Natl. Acad. Sci. USA 106, 9105–9108 (2009)CrossRef
3.
Zurück zum Zitat Ravi, S., Crall, J.D., McNeilly, L., et al.: Hummingbird flight stability and control in freestream turbulent winds. J. Exp. Biol. 218, 1444–1452 (2015)CrossRef Ravi, S., Crall, J.D., McNeilly, L., et al.: Hummingbird flight stability and control in freestream turbulent winds. J. Exp. Biol. 218, 1444–1452 (2015)CrossRef
4.
Zurück zum Zitat Vance, J.T., Faruque, I., Humbert, J.S.: Kinematic strategies for mitigating gust perturbations in insects. Bioinspir. Biomim. 8, 016004 (2013)CrossRef Vance, J.T., Faruque, I., Humbert, J.S.: Kinematic strategies for mitigating gust perturbations in insects. Bioinspir. Biomim. 8, 016004 (2013)CrossRef
5.
Zurück zum Zitat Fuller, S.B., Straw, A.D., Peek, M.Y., et al.: Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae. Proc. Natl. Acad. Sci. USA 111, E1182–E1191 (2014)CrossRef Fuller, S.B., Straw, A.D., Peek, M.Y., et al.: Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae. Proc. Natl. Acad. Sci. USA 111, E1182–E1191 (2014)CrossRef
6.
Zurück zum Zitat Ravi, S., Crall, J.D., Fisher, A., et al.: Rolling with the flow: bumblebees flying in unsteady wakes. J. Exp. Biol. 216, 4299–4309 (2013)CrossRef Ravi, S., Crall, J.D., Fisher, A., et al.: Rolling with the flow: bumblebees flying in unsteady wakes. J. Exp. Biol. 216, 4299–4309 (2013)CrossRef
7.
Zurück zum Zitat Ortega-Jimenez, V.M., Greeter, J.S.M., Mittal, R., et al.: Hawkmoth flight stability in turbulent vortex streets. J. Exp. Biol. 216, 4567–4579 (2013)CrossRef Ortega-Jimenez, V.M., Greeter, J.S.M., Mittal, R., et al.: Hawkmoth flight stability in turbulent vortex streets. J. Exp. Biol. 216, 4567–4579 (2013)CrossRef
8.
Zurück zum Zitat Ortega-Jimenez, V.M., Sapir, N., Wolf, M., et al.: Into turbulent air: size-dependent effects of von Kármán vortex streets on hummingbird flight kinematics and energetics. Proc. R. Soc. B 281, 20140180 (2014)CrossRef Ortega-Jimenez, V.M., Sapir, N., Wolf, M., et al.: Into turbulent air: size-dependent effects of von Kármán vortex streets on hummingbird flight kinematics and energetics. Proc. R. Soc. B 281, 20140180 (2014)CrossRef
9.
Zurück zum Zitat Ortega-Jimenez, V.M., Mittal, R., Hedrick, T.L.: Hawkmoth flight performance in tornado-like whirlwind vortices. Bioinspir. Biomim. 9, 025003 (2014)CrossRef Ortega-Jimenez, V.M., Mittal, R., Hedrick, T.L.: Hawkmoth flight performance in tornado-like whirlwind vortices. Bioinspir. Biomim. 9, 025003 (2014)CrossRef
10.
Zurück zum Zitat Ellington, C.P., van den Berg, C., Willmott, A.P., et al.: Leading-edge vortices in insect flight. Nature 384, 626–630 (1996)CrossRef Ellington, C.P., van den Berg, C., Willmott, A.P., et al.: Leading-edge vortices in insect flight. Nature 384, 626–630 (1996)CrossRef
11.
Zurück zum Zitat Dickinson, M.H., Lehmann, F.O., Sane, S.P.: Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960 (1999)CrossRef Dickinson, M.H., Lehmann, F.O., Sane, S.P.: Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960 (1999)CrossRef
12.
Zurück zum Zitat Srygley, R.B., Thomas, A.L.R.: Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420, 660–664 (2002)CrossRef Srygley, R.B., Thomas, A.L.R.: Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420, 660–664 (2002)CrossRef
13.
Zurück zum Zitat Bomphrey, R.J., Nakata, T., Phillips, N., et al.: Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature 544, 92–95 (2017)CrossRef Bomphrey, R.J., Nakata, T., Phillips, N., et al.: Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature 544, 92–95 (2017)CrossRef
14.
Zurück zum Zitat Engels, T., Kolomenskiy, D., Schneider, K., et al.: Bumblebee in heavy turbulence. Phys. Rev. Lett. 116, 028103 (2016)CrossRef Engels, T., Kolomenskiy, D., Schneider, K., et al.: Bumblebee in heavy turbulence. Phys. Rev. Lett. 116, 028103 (2016)CrossRef
15.
Zurück zum Zitat Sun, M.: Insect flight dynamics: stability and control. Rev. Mod. Phys. 86, 615–646 (2014)CrossRef Sun, M.: Insect flight dynamics: stability and control. Rev. Mod. Phys. 86, 615–646 (2014)CrossRef
16.
Zurück zum Zitat Liu, H., Ravi, S., Kolomenskiy, D., et al.: Biomechanics and biomimetics in insect-inspired flight systems. Philos. Trans. R. Soc. B371, 20150390 (2016)CrossRef Liu, H., Ravi, S., Kolomenskiy, D., et al.: Biomechanics and biomimetics in insect-inspired flight systems. Philos. Trans. R. Soc. B371, 20150390 (2016)CrossRef
17.
Zurück zum Zitat Sane, S.P., Dickinson, M.H.: The control of flight force by a flapping wing: lift and drag production. J. Exp. Biol. 204, 2607–2626 (2001) Sane, S.P., Dickinson, M.H.: The control of flight force by a flapping wing: lift and drag production. J. Exp. Biol. 204, 2607–2626 (2001)
18.
Zurück zum Zitat Elzinga, M.J., Dickson, W.B., Dickinson, M.H.: The influence of sensory delay on the yaw dynamics of a flapping insect. J. R. Soc. Interface 9, 1685–1696 (2012)CrossRef Elzinga, M.J., Dickson, W.B., Dickinson, M.H.: The influence of sensory delay on the yaw dynamics of a flapping insect. J. R. Soc. Interface 9, 1685–1696 (2012)CrossRef
19.
Zurück zum Zitat Wootton, R.J.: Support and deformability in insect wings. J. Zool. 193, 447–468 (1981)CrossRef Wootton, R.J.: Support and deformability in insect wings. J. Zool. 193, 447–468 (1981)CrossRef
20.
Zurück zum Zitat Combes, S.A., Daniel, T.L.: Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J. Exp. Biol. 206, 2999–3006 (2003)CrossRef Combes, S.A., Daniel, T.L.: Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J. Exp. Biol. 206, 2999–3006 (2003)CrossRef
21.
Zurück zum Zitat Nakata, T., Liu, H.: Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc. R. Soc. B279, 722–731 (2012)CrossRef Nakata, T., Liu, H.: Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc. R. Soc. B279, 722–731 (2012)CrossRef
22.
Zurück zum Zitat Young, J., Walker, S.M., Bomphrey, R.J., et al.: Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325, 1549–1552 (2009)CrossRef Young, J., Walker, S.M., Bomphrey, R.J., et al.: Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325, 1549–1552 (2009)CrossRef
23.
Zurück zum Zitat Du, G., Sun, M.: Effects of wing deformation on aerodynamic forces in hovering hoverflies. J. Exp. Biol. 213, 2273–2283 (2010)CrossRef Du, G., Sun, M.: Effects of wing deformation on aerodynamic forces in hovering hoverflies. J. Exp. Biol. 213, 2273–2283 (2010)CrossRef
24.
Zurück zum Zitat Zheng, L., Hedrick, T.L., Mittal, R.: Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLoS ONE 8, e53060 (2012)CrossRef Zheng, L., Hedrick, T.L., Mittal, R.: Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLoS ONE 8, e53060 (2012)CrossRef
25.
Zurück zum Zitat Le, T.Q., Truong, T.V., Park, S.H., et al.: Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight. J. R. Soc. Interface 10, 20130312 (2013)CrossRef Le, T.Q., Truong, T.V., Park, S.H., et al.: Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight. J. R. Soc. Interface 10, 20130312 (2013)CrossRef
26.
Zurück zum Zitat Dickinson, M.H., Farley, C.T., Full, R.J., et al.: How animals move: an integrative view. Science 288, 100–106 (2000)CrossRef Dickinson, M.H., Farley, C.T., Full, R.J., et al.: How animals move: an integrative view. Science 288, 100–106 (2000)CrossRef
27.
Zurück zum Zitat Kubow, T.M., Full, R.J.: The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners. Philos. Trans. R. Soc. Lond. B354, 849–861 (1999)CrossRef Kubow, T.M., Full, R.J.: The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners. Philos. Trans. R. Soc. Lond. B354, 849–861 (1999)CrossRef
28.
Zurück zum Zitat Carruthers, A.C., Thomas, A.L.R., Taylor, G.K.: Automatic aeroelastic devices in the wings of a steppe eagle Aquila nipalensis. J. Exp. Biol. 210, 4136–4149 (2007)CrossRef Carruthers, A.C., Thomas, A.L.R., Taylor, G.K.: Automatic aeroelastic devices in the wings of a steppe eagle Aquila nipalensis. J. Exp. Biol. 210, 4136–4149 (2007)CrossRef
29.
Zurück zum Zitat Ravi, S., Kolomenskiy, D., Engels, T., et al.: Bumblebees minimize control challenges by combining active and passive modes in unsteady winds. Sci. Rep. 6, 35043 (2016)CrossRef Ravi, S., Kolomenskiy, D., Engels, T., et al.: Bumblebees minimize control challenges by combining active and passive modes in unsteady winds. Sci. Rep. 6, 35043 (2016)CrossRef
30.
Zurück zum Zitat Mistick, E.A., Mountcastle, A.M., Combes, S.A.: Wing flexibility improves bumblebee flight stability. J. Exp. Biol. 219, 3384–3390 (2016)CrossRef Mistick, E.A., Mountcastle, A.M., Combes, S.A.: Wing flexibility improves bumblebee flight stability. J. Exp. Biol. 219, 3384–3390 (2016)CrossRef
31.
Zurück zum Zitat Chen, J.S., Chen, J.Y., Chou, Y.F.: On the natural frequencies and mode shapes of dragonfly wings. J. Sound Vib. 313, 643–654 (2008)CrossRef Chen, J.S., Chen, J.Y., Chou, Y.F.: On the natural frequencies and mode shapes of dragonfly wings. J. Sound Vib. 313, 643–654 (2008)CrossRef
32.
Zurück zum Zitat Ha, N.S., Truong, Q.T., Goo, N.S., et al.: Relationship between wingbeat frequency and resonant frequency of the wing in insects. Bioinspir. Biomim. 8, 046008 (2013)CrossRef Ha, N.S., Truong, Q.T., Goo, N.S., et al.: Relationship between wingbeat frequency and resonant frequency of the wing in insects. Bioinspir. Biomim. 8, 046008 (2013)CrossRef
33.
Zurück zum Zitat Nakata, T., Liu, H.: A fluid-structure interaction model of insect flight with flexible wings. J. Comput. Phys. 231, 1822–1847 (2012)MathSciNetCrossRef Nakata, T., Liu, H.: A fluid-structure interaction model of insect flight with flexible wings. J. Comput. Phys. 231, 1822–1847 (2012)MathSciNetCrossRef
34.
Zurück zum Zitat Liu, H.: Integrated modeling of insect flight: from morphology, kinematics to aerodynamics. J. Comput. Phys. 228, 439–459 (2009)MathSciNetCrossRef Liu, H.: Integrated modeling of insect flight: from morphology, kinematics to aerodynamics. J. Comput. Phys. 228, 439–459 (2009)MathSciNetCrossRef
35.
Zurück zum Zitat Willmott, A.P., Ellington, C.P.: The mechanics of flight in the hawkmoth Manduca sexta. I. kinematics of hovering and forward flight. J. Exp. Biol. 200, 2705–2722 (1997) Willmott, A.P., Ellington, C.P.: The mechanics of flight in the hawkmoth Manduca sexta. I. kinematics of hovering and forward flight. J. Exp. Biol. 200, 2705–2722 (1997)
36.
Zurück zum Zitat Nakata, T., Liu, H.: A fluid-structure interaction model of insect flight with flexible wings. J. Comput. Phys. 231, 1822–1847 (2012)MathSciNetCrossRef Nakata, T., Liu, H.: A fluid-structure interaction model of insect flight with flexible wings. J. Comput. Phys. 231, 1822–1847 (2012)MathSciNetCrossRef
37.
Zurück zum Zitat Sun, M., Xiong, Y.: Dynamic flight stability of a hovering bumblebee. J. Exp. Biol. 208, 447–459 (2005)CrossRef Sun, M., Xiong, Y.: Dynamic flight stability of a hovering bumblebee. J. Exp. Biol. 208, 447–459 (2005)CrossRef
38.
Zurück zum Zitat Taylor, G.K., Thomas, A.L.R.: Animal flight dynamics II. Longitudinal stability in flapping flight. J. Theor. Biol. 214, 351–370 (2002)CrossRef Taylor, G.K., Thomas, A.L.R.: Animal flight dynamics II. Longitudinal stability in flapping flight. J. Theor. Biol. 214, 351–370 (2002)CrossRef
39.
Zurück zum Zitat Viswanath, K., Tafti, D.K.: Effect of frontal gusts on forward flapping flight. AIAA J. 48, 2049–2062 (2010)CrossRef Viswanath, K., Tafti, D.K.: Effect of frontal gusts on forward flapping flight. AIAA J. 48, 2049–2062 (2010)CrossRef
Metadaten
Titel
A simulation-based study on longitudinal gust response of flexible flapping wings
verfasst von
Toshiyuki Nakata
Ryusuke Noda
Shinobu Kumagai
Hao Liu
Publikationsdatum
01.08.2018
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 6/2018
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-0789-5

Weitere Artikel der Ausgabe 6/2018

Acta Mechanica Sinica 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.