Skip to main content
Erschienen in: Computational Mechanics 5/2018

23.01.2018 | Original Paper

A smoothed finite element approach for computational fluid dynamics: applications to incompressible flows and fluid–structure interaction

verfasst von: Tao He, Hexin Zhang, Kai Zhang

Erschienen in: Computational Mechanics | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper the cell-based smoothed finite element method (CS-FEM) is introduced into two mainstream aspects of computational fluid dynamics: incompressible flows and fluid–structure interaction (FSI). The emphasis is placed on the fluid gradient smoothing which simply requires equal numbers of Gaussian points and smoothing cells in each four-node quadrilateral element. The second-order, smoothed characteristic-based split scheme in conjunction with a pressure stabilization is then presented to settle the incompressible Navier–Stokes equations. As for FSI, CS-FEM is applied to the geometrically nonlinear solid as usual. Following an efficient mesh deformation strategy, block-Gauss–Seidel procedure is adopted to couple all individual fields under the arbitrary Lagriangian–Eulerian description. The proposed solvers are carefully validated against the previously published data for several benchmarks, revealing visible improvements in computed results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bao Y, Zhou D, Huang C (2010) Numerical simulation of flow over three circular cylinders in equilateral arrangements at low Reynolds number by a second-order characteristic-based split finite element method. Comput Fluids 39(5):882–899CrossRef Bao Y, Zhou D, Huang C (2010) Numerical simulation of flow over three circular cylinders in equilateral arrangements at low Reynolds number by a second-order characteristic-based split finite element method. Comput Fluids 39(5):882–899CrossRef
2.
Zurück zum Zitat Bathe KJ, Ramm E, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Methods Eng 9(2):353–386CrossRef Bathe KJ, Ramm E, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Methods Eng 9(2):353–386CrossRef
3.
Zurück zum Zitat Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37MathSciNetCrossRef Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37MathSciNetCrossRef
4.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, ChichesterCrossRef Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, ChichesterCrossRef
5.
Zurück zum Zitat Behr M, Hastreiter D, Mittal S, Tezduyar TE (1995) Incompressible flow past a circular cylinder: dependence of the computed flow field on the location of the lateral boundaries. Comput Methods Appl Mechods Eng 123(1–4):309–316CrossRef Behr M, Hastreiter D, Mittal S, Tezduyar TE (1995) Incompressible flow past a circular cylinder: dependence of the computed flow field on the location of the lateral boundaries. Comput Methods Appl Mechods Eng 123(1–4):309–316CrossRef
6.
Zurück zum Zitat Bevan RLT, Boileau E, van Loon R, Lewis RW, Nithiarasu P (2016) A comparative study of fractional step method in its quasi-implicit, semi-implicit and fully-explicit forms for incompressible flows. Int J Numer Methods Heat Fluid Flow 26(3/4):595–623MathSciNetCrossRef Bevan RLT, Boileau E, van Loon R, Lewis RW, Nithiarasu P (2016) A comparative study of fractional step method in its quasi-implicit, semi-implicit and fully-explicit forms for incompressible flows. Int J Numer Methods Heat Fluid Flow 26(3/4):595–623MathSciNetCrossRef
7.
Zurück zum Zitat Braun AL, Awruch AM (2009) A partitioned model for fluid–structure interaction problems using hexahedral finite elements with one-point quadrature. Int J Numer Methods Eng 79(5):505–549MathSciNetCrossRef Braun AL, Awruch AM (2009) A partitioned model for fluid–structure interaction problems using hexahedral finite elements with one-point quadrature. Int J Numer Methods Eng 79(5):505–549MathSciNetCrossRef
8.
Zurück zum Zitat Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1–3):199–259MathSciNetCrossRef Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1–3):199–259MathSciNetCrossRef
9.
Zurück zum Zitat Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50(2):435–466CrossRef Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50(2):435–466CrossRef
10.
11.
Zurück zum Zitat Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech ASME 60(2):371–375MathSciNetCrossRef Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech ASME 60(2):371–375MathSciNetCrossRef
12.
Zurück zum Zitat Codina R (2001) Pressure stability in fractional step finite element methods for incompressible flows. J Comput Phys 170(1):112–140MathSciNetCrossRef Codina R (2001) Pressure stability in fractional step finite element methods for incompressible flows. J Comput Phys 170(1):112–140MathSciNetCrossRef
13.
Zurück zum Zitat Cui XY, Liu GR, Li GY, Zhao X, Nguyen TT, Sun GY (2008) A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells. Comput Model Eng Sci (CMES) 28(2):109–126MathSciNetMATH Cui XY, Liu GR, Li GY, Zhao X, Nguyen TT, Sun GY (2008) A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells. Comput Model Eng Sci (CMES) 28(2):109–126MathSciNetMATH
14.
Zurück zum Zitat Dai KY, Liu GR (2007) Free and forced vibration analysis using the smoothed finite element method (SFEM). J Sound Vib 301(3):803–820CrossRef Dai KY, Liu GR (2007) Free and forced vibration analysis using the smoothed finite element method (SFEM). J Sound Vib 301(3):803–820CrossRef
15.
Zurück zum Zitat De Rosis A, Falcucci G, Ubertini S, Ubertini F (2013) A coupled lattice Boltzmann-finite element approach for two-dimensional fluid–structure interaction. Comput Fluids 86:558–568MathSciNetCrossRef De Rosis A, Falcucci G, Ubertini S, Ubertini F (2013) A coupled lattice Boltzmann-finite element approach for two-dimensional fluid–structure interaction. Comput Fluids 86:558–568MathSciNetCrossRef
16.
Zurück zum Zitat Dettmer W, Perić D (2006) A computational framework for fluid-rigid body interaction: finite element formulation and applications. Comput Methods Appl Methods Eng 195(13):1633–1666MathSciNetCrossRef Dettmer W, Perić D (2006) A computational framework for fluid-rigid body interaction: finite element formulation and applications. Comput Methods Appl Methods Eng 195(13):1633–1666MathSciNetCrossRef
17.
Zurück zum Zitat Dettmer W, Perić D (2006) A computational framework for fluid–structure interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195(41–43):5754–5779CrossRef Dettmer W, Perić D (2006) A computational framework for fluid–structure interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195(41–43):5754–5779CrossRef
18.
Zurück zum Zitat Donea J (1984) A Taylor–Galerkin method for convective transport problems. Int J Numer Methods Eng 20(1):101–119MathSciNetCrossRef Donea J (1984) A Taylor–Galerkin method for convective transport problems. Int J Numer Methods Eng 20(1):101–119MathSciNetCrossRef
19.
Zurück zum Zitat Förster C, Wall WA, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Methods Appl Mech Eng 196(7):1278–1293MathSciNetCrossRef Förster C, Wall WA, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Methods Appl Mech Eng 196(7):1278–1293MathSciNetCrossRef
20.
Zurück zum Zitat Froehle B, Persson PO (2014) A high-order discontinuous Galerkin method for fluid–structure interaction with efficient implicit–explicit time stepping. J Comput Phys 272(9):455–470MathSciNetCrossRef Froehle B, Persson PO (2014) A high-order discontinuous Galerkin method for fluid–structure interaction with efficient implicit–explicit time stepping. J Comput Phys 272(9):455–470MathSciNetCrossRef
21.
Zurück zum Zitat Ghia U, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys 48(3):387–411CrossRef Ghia U, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys 48(3):387–411CrossRef
22.
Zurück zum Zitat Graham JMR (1992) Report on the session comparing computation of flow past circular cylinders with experimental data. In: IUTAM symposium: bluff-body wakes, dynamics and instabilities. Springer, Berlin Heidelberg, Göttingen, Germany, pp 317–323CrossRef Graham JMR (1992) Report on the session comparing computation of flow past circular cylinders with experimental data. In: IUTAM symposium: bluff-body wakes, dynamics and instabilities. Springer, Berlin Heidelberg, Göttingen, Germany, pp 317–323CrossRef
23.
Zurück zum Zitat Habchi C, Russeil S, Bougeard D, Harion JL, Lemenand T, Ghanem A, Valle DD, Peerhossaini H (2013) Partitioned solver for strongly coupled fluid–structure interaction. Comput Fluids 71:306–319MathSciNetCrossRef Habchi C, Russeil S, Bougeard D, Harion JL, Lemenand T, Ghanem A, Valle DD, Peerhossaini H (2013) Partitioned solver for strongly coupled fluid–structure interaction. Comput Fluids 71:306–319MathSciNetCrossRef
24.
Zurück zum Zitat He T (2015) On a partitioned strong coupling algorithm for modeling fluid–structure interaction. Int J Appl Mech 7(2):1550,021CrossRef He T (2015) On a partitioned strong coupling algorithm for modeling fluid–structure interaction. Int J Appl Mech 7(2):1550,021CrossRef
25.
Zurück zum Zitat He T (2015) Partitioned coupling strategies for fluid–structure interaction with large displacement: explicit, implicit and semi-implicit schemes. Wind Struct 20(3):423–448MathSciNetCrossRef He T (2015) Partitioned coupling strategies for fluid–structure interaction with large displacement: explicit, implicit and semi-implicit schemes. Wind Struct 20(3):423–448MathSciNetCrossRef
26.
Zurück zum Zitat He T (2015) A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder. Int J Comput Methods 12(2):1550,012MathSciNetCrossRef He T (2015) A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder. Int J Comput Methods 12(2):1550,012MathSciNetCrossRef
27.
Zurück zum Zitat He T (2015) Semi-implicit coupling of CS-FEM and FEM for the interaction between a geometrically nonlinear solid and an incompressible fluid. Int J Comput Methods 12(5):1550,025MathSciNetCrossRef He T (2015) Semi-implicit coupling of CS-FEM and FEM for the interaction between a geometrically nonlinear solid and an incompressible fluid. Int J Comput Methods 12(5):1550,025MathSciNetCrossRef
28.
Zurück zum Zitat He T (2016) A CBS-based partitioned semi-implicit coupling algorithm for fluid–structure interaction using MCIBC method. Comput Methods Appl Mech Eng 298:252–278MathSciNetCrossRef He T (2016) A CBS-based partitioned semi-implicit coupling algorithm for fluid–structure interaction using MCIBC method. Comput Methods Appl Mech Eng 298:252–278MathSciNetCrossRef
29.
Zurück zum Zitat He T, Zhang K (2015) Combined interface boundary condition method for fluid–structure interaction: some improvements and extensions. Ocean Eng 109:243–255CrossRef He T, Zhang K (2015) Combined interface boundary condition method for fluid–structure interaction: some improvements and extensions. Ocean Eng 109:243–255CrossRef
30.
Zurück zum Zitat He T, Zhang K (2017) An overview of the combined interface boundary condition method for fluid–structure interaction. Arch Comput Methods Eng 24(4):891–934MathSciNetCrossRef He T, Zhang K (2017) An overview of the combined interface boundary condition method for fluid–structure interaction. Arch Comput Methods Eng 24(4):891–934MathSciNetCrossRef
31.
Zurück zum Zitat He T, Zhang K, Wang T (2017) AC-CBS-based partitioned semi-implicit coupling algorithm for fluid–structure interaction using stabilized second-order pressure scheme. Commun Comput Phys 21(5):1449–1474MathSciNetCrossRef He T, Zhang K, Wang T (2017) AC-CBS-based partitioned semi-implicit coupling algorithm for fluid–structure interaction using stabilized second-order pressure scheme. Commun Comput Phys 21(5):1449–1474MathSciNetCrossRef
32.
Zurück zum Zitat He T, Zhou D, Bao Y (2012) Combined interface boundary condition method for fluid-rigid body interaction. Comput Methods Appl Mech Eng 223:81–102MathSciNetCrossRef He T, Zhou D, Bao Y (2012) Combined interface boundary condition method for fluid-rigid body interaction. Comput Methods Appl Mech Eng 223:81–102MathSciNetCrossRef
33.
Zurück zum Zitat He T, Zhou D, Han Z, Tu J, Ma J (2014) Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method. Int J Comput Fluid Dyn 28(6–10):272–300MathSciNetCrossRef He T, Zhou D, Han Z, Tu J, Ma J (2014) Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method. Int J Comput Fluid Dyn 28(6–10):272–300MathSciNetCrossRef
34.
Zurück zum Zitat Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 14(3):227–253CrossRef Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 14(3):227–253CrossRef
35.
Zurück zum Zitat Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective–diffusive equations. Comput Methods Appl Mech Eng 73(2):173–189MathSciNetCrossRef Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective–diffusive equations. Comput Methods Appl Mech Eng 73(2):173–189MathSciNetCrossRef
36.
Zurück zum Zitat Jaiman R, Geubelle P, Loth E, Jiao X (2011) Combined interface boundary condition method for unsteady fluid–structure interaction. Comput Methods Appl Mech Eng 200(1):27–39MathSciNetCrossRef Jaiman R, Geubelle P, Loth E, Jiao X (2011) Combined interface boundary condition method for unsteady fluid–structure interaction. Comput Methods Appl Mech Eng 200(1):27–39MathSciNetCrossRef
37.
Zurück zum Zitat Jaiman RK, Pillalamarri NR, Guan MZ (2016) A stable second-order partitioned iterative scheme for freely vibrating low-mass bluff bodies in a uniform flow. Comput Methods Appl Mech Eng 301:187–215MathSciNetCrossRef Jaiman RK, Pillalamarri NR, Guan MZ (2016) A stable second-order partitioned iterative scheme for freely vibrating low-mass bluff bodies in a uniform flow. Comput Methods Appl Mech Eng 301:187–215MathSciNetCrossRef
38.
Zurück zum Zitat Jiang C, Zhang ZQ, Han X, Liu GR, Lin T (2018) A cell-based smoothed finite element method with semi-implicit CBS procedures for incompressible laminar viscous flows. Int J Numer Methods Fluids 86(1):20–45MathSciNetCrossRef Jiang C, Zhang ZQ, Han X, Liu GR, Lin T (2018) A cell-based smoothed finite element method with semi-implicit CBS procedures for incompressible laminar viscous flows. Int J Numer Methods Fluids 86(1):20–45MathSciNetCrossRef
39.
Zurück zum Zitat Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119(1):73–94CrossRef Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119(1):73–94CrossRef
40.
Zurück zum Zitat Kaneko S, Hong G, Mitsume N, Yamada T, Yoshimura S (2017) Partitioned-coupling FSI analysis with active control. Comput Mech 60(4):549–558MathSciNetCrossRef Kaneko S, Hong G, Mitsume N, Yamada T, Yoshimura S (2017) Partitioned-coupling FSI analysis with active control. Comput Mech 60(4):549–558MathSciNetCrossRef
41.
Zurück zum Zitat Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG (2011) Nonlinear fluid–structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples. Comput Mech 47(3):305–323MathSciNetCrossRef Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG (2011) Nonlinear fluid–structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples. Comput Mech 47(3):305–323MathSciNetCrossRef
42.
Zurück zum Zitat Kjellgren P (1997) A semi-implicit fractional step finite element method for viscous incompressible flows. Comput Mech 20(6):541–550MathSciNetCrossRef Kjellgren P (1997) A semi-implicit fractional step finite element method for viscous incompressible flows. Comput Mech 20(6):541–550MathSciNetCrossRef
43.
Zurück zum Zitat Kuhl D, Crisfield MA (1999) Energy-conserving and decaying algorithms in non-linear structural dynamics. Int J Numer Methods Eng 45(5):569–599MathSciNetCrossRef Kuhl D, Crisfield MA (1999) Energy-conserving and decaying algorithms in non-linear structural dynamics. Int J Numer Methods Eng 45(5):569–599MathSciNetCrossRef
44.
Zurück zum Zitat Küttler U, Wall WA (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43(1):61–72CrossRef Küttler U, Wall WA (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43(1):61–72CrossRef
45.
Zurück zum Zitat Lefrançois E (2008) A simple mesh deformation technique for fluid–structure interaction based on a submesh approach. Int J Numer Methods Eng 75(9):1085–1101MathSciNetCrossRef Lefrançois E (2008) A simple mesh deformation technique for fluid–structure interaction based on a submesh approach. Int J Numer Methods Eng 75(9):1085–1101MathSciNetCrossRef
46.
Zurück zum Zitat Lesoinne M, Farhat C (1996) Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Comput Methods Appl Mech Eng 134(1):71–90CrossRef Lesoinne M, Farhat C (1996) Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Comput Methods Appl Mech Eng 134(1):71–90CrossRef
47.
Zurück zum Zitat Liew KM, Wang WQ, Zhang LX, He XQ (2007) A computational approach for predicting the hydroelasticity of flexible structures based on the pressure Poisson equation. Int J Numer Methods Eng 72(13):1560–1583MathSciNetCrossRef Liew KM, Wang WQ, Zhang LX, He XQ (2007) A computational approach for predicting the hydroelasticity of flexible structures based on the pressure Poisson equation. Int J Numer Methods Eng 72(13):1560–1583MathSciNetCrossRef
48.
Zurück zum Zitat Liu GR, Dai KY, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39(6):859–877CrossRef Liu GR, Dai KY, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39(6):859–877CrossRef
49.
Zurück zum Zitat Liu GR, Nguyen TT (2010) Smoothed finite element methods. CRC Press, Boca RatonCrossRef Liu GR, Nguyen TT (2010) Smoothed finite element methods. CRC Press, Boca RatonCrossRef
50.
Zurück zum Zitat Löhner R, Morgan K, Zienkiewicz OC (1984) The solution of non-linear hyperbolic equation systems by the finite element method. Int J Numer Methods Fluids 4(11):1043–1063CrossRef Löhner R, Morgan K, Zienkiewicz OC (1984) The solution of non-linear hyperbolic equation systems by the finite element method. Int J Numer Methods Fluids 4(11):1043–1063CrossRef
51.
Zurück zum Zitat Markou GA, Mouroutis ZS, Charmpis DC, Papadrakakis M (2007) The ortho-semi-torsional (OST) spring analogy method for 3D mesh moving boundary problems. Comput Methods Appl Mech Eng 196(4):747–765CrossRef Markou GA, Mouroutis ZS, Charmpis DC, Papadrakakis M (2007) The ortho-semi-torsional (OST) spring analogy method for 3D mesh moving boundary problems. Comput Methods Appl Mech Eng 196(4):747–765CrossRef
52.
Zurück zum Zitat Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech ASCE 85(3):67–94 Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech ASCE 85(3):67–94
53.
Zurück zum Zitat Nithiarasu P, Codina R, Zienkiewicz OC (2006) The characteristic-based split (CBS) scheme-a unified approach to fluid dynamics. Int J Numer Methods Eng 66(10):1514–1546MathSciNetCrossRef Nithiarasu P, Codina R, Zienkiewicz OC (2006) The characteristic-based split (CBS) scheme-a unified approach to fluid dynamics. Int J Numer Methods Eng 66(10):1514–1546MathSciNetCrossRef
54.
Zurück zum Zitat Nithiarasu P, Zienkiewicz OC (2006) Analysis of an explicit and matrix free fractional step method for incompressible flows. Comput Methods Appl Mech Eng 195(41):5537–5551CrossRef Nithiarasu P, Zienkiewicz OC (2006) Analysis of an explicit and matrix free fractional step method for incompressible flows. Comput Methods Appl Mech Eng 195(41):5537–5551CrossRef
55.
Zurück zum Zitat Nomura T, Hughes TJR (1992) An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body. Comput Methods Appl Mech Eng 95(1):115–138CrossRef Nomura T, Hughes TJR (1992) An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body. Comput Methods Appl Mech Eng 95(1):115–138CrossRef
56.
Zurück zum Zitat Norberg C (2003) Fluctuating lift on a circular cylinder: review and new measurements. J Fluids Struct 17(1):57–96CrossRef Norberg C (2003) Fluctuating lift on a circular cylinder: review and new measurements. J Fluids Struct 17(1):57–96CrossRef
57.
Zurück zum Zitat Otoguro Y, Takizawa K, Tezduyar TE (2017) Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Comput Fluids 158:189–200MathSciNetCrossRef Otoguro Y, Takizawa K, Tezduyar TE (2017) Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Comput Fluids 158:189–200MathSciNetCrossRef
58.
Zurück zum Zitat Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space-time finite element computation of arterial fluid–structure interactions. Comput Mech 46(1):31–41MathSciNetCrossRef Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space-time finite element computation of arterial fluid–structure interactions. Comput Mech 46(1):31–41MathSciNetCrossRef
59.
Zurück zum Zitat Takizawa K, Tezduyar TE, Asada S, Kuraishi T (2016) Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC). Comput Fluids 141:124–134MathSciNetCrossRef Takizawa K, Tezduyar TE, Asada S, Kuraishi T (2016) Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC). Comput Fluids 141:124–134MathSciNetCrossRef
60.
Zurück zum Zitat Takizawa K, Tezduyar TE, Otoguro Y, Terahara T, Kuraishi T, Hattori H (2017) Turbocharger flow computations with the space-time isogeometric analysis (ST-IGA). Comput Fluids 142:15–20MathSciNetCrossRef Takizawa K, Tezduyar TE, Otoguro Y, Terahara T, Kuraishi T, Hattori H (2017) Turbocharger flow computations with the space-time isogeometric analysis (ST-IGA). Comput Fluids 142:15–20MathSciNetCrossRef
61.
Zurück zum Zitat Teixeira PRF, Awruch AM (2005) Numerical simulation of fluid–structure interaction using the finite element method. Comput Fluids 34(2):249–273CrossRef Teixeira PRF, Awruch AM (2005) Numerical simulation of fluid–structure interaction using the finite element method. Comput Fluids 34(2):249–273CrossRef
62.
Zurück zum Zitat Témam R (1968) Une méthode d’approximation de la solution des équations de Navier–Stokes. Bulletin de la Société Mathématique de France 96:115–152MathSciNetCrossRef Témam R (1968) Une méthode d’approximation de la solution des équations de Navier–Stokes. Bulletin de la Société Mathématique de France 96:115–152MathSciNetCrossRef
63.
Zurück zum Zitat Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MathSciNetMATH Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MathSciNetMATH
64.
Zurück zum Zitat Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94(3):339–351MathSciNetCrossRef Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94(3):339–351MathSciNetCrossRef
65.
Zurück zum Zitat Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371MathSciNetCrossRef Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371MathSciNetCrossRef
66.
Zurück zum Zitat Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95(2):221–242CrossRef Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95(2):221–242CrossRef
67.
Zurück zum Zitat Wall WA, Ramm E (1998) Fluid–structure interaction based upon a stabilized (ALE) finite element method. In: Idelsohn SR, Oñate E, Dvorkin E (eds) Proceedings of the 4th World Congress on computational mechanics: new trends and applications. CIMNE, Barcelona, pp 1–20 Wall WA, Ramm E (1998) Fluid–structure interaction based upon a stabilized (ALE) finite element method. In: Idelsohn SR, Oñate E, Dvorkin E (eds) Proceedings of the 4th World Congress on computational mechanics: new trends and applications. CIMNE, Barcelona, pp 1–20
68.
Zurück zum Zitat Wang S, Khoo BC, Liu GR, Xu GX, Chen L (2014) Coupling GSM/ALE with ES-FEM-T3 for fluid-deformable structure interactions. J Comput Phys 276:315–340MathSciNetCrossRef Wang S, Khoo BC, Liu GR, Xu GX, Chen L (2014) Coupling GSM/ALE with ES-FEM-T3 for fluid-deformable structure interactions. J Comput Phys 276:315–340MathSciNetCrossRef
69.
Zurück zum Zitat Williamson CHK, Roshko A (1988) Vortex formation in the wake of an oscillating cylinder. J Fluids Struct 2(4):355–381CrossRef Williamson CHK, Roshko A (1988) Vortex formation in the wake of an oscillating cylinder. J Fluids Struct 2(4):355–381CrossRef
70.
Zurück zum Zitat Yao J, Liu GR, Narmoneva DA, Hinton RB, Zhang ZQ (2012) Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves. Comput Mech 90(6):1292–1320MathSciNetMATH Yao J, Liu GR, Narmoneva DA, Hinton RB, Zhang ZQ (2012) Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves. Comput Mech 90(6):1292–1320MathSciNetMATH
71.
Zurück zum Zitat Yoo JW, Moran B, Chen JS (2004) Stabilized conforming nodal integration in the natural-element method. Int J Numer Methods Eng 60(5):861–890CrossRef Yoo JW, Moran B, Chen JS (2004) Stabilized conforming nodal integration in the natural-element method. Int J Numer Methods Eng 60(5):861–890CrossRef
73.
Zurück zum Zitat Zhang ZQ, Liu GR, Khoo BC (2012) Immersed smoothed finite element method for two dimensional fluid–structure interaction problems. Int J Numer Methods Eng 90(10):1292–1320MathSciNetCrossRef Zhang ZQ, Liu GR, Khoo BC (2012) Immersed smoothed finite element method for two dimensional fluid–structure interaction problems. Int J Numer Methods Eng 90(10):1292–1320MathSciNetCrossRef
74.
Zurück zum Zitat Zhang ZQ, Liu GR, Khoo BC (2013) A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid–structure interaction problems. Comput Mech 51(2):129–150MathSciNetCrossRef Zhang ZQ, Liu GR, Khoo BC (2013) A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid–structure interaction problems. Comput Mech 51(2):129–150MathSciNetCrossRef
75.
Zurück zum Zitat Zhang ZQ, Yao J, Liu GR (2011) An immersed smoothed finite element method for fluid–structure interaction problems. Int J Comput Methods 8(4):747–757MathSciNetCrossRef Zhang ZQ, Yao J, Liu GR (2011) An immersed smoothed finite element method for fluid–structure interaction problems. Int J Comput Methods 8(4):747–757MathSciNetCrossRef
76.
Zurück zum Zitat Zhou CY, So RMC, Lam K (1999) Vortex-induced vibrations of an elastic circular cylinder. J Fluids Struct 13(2):165–189CrossRef Zhou CY, So RMC, Lam K (1999) Vortex-induced vibrations of an elastic circular cylinder. J Fluids Struct 13(2):165–189CrossRef
77.
Zurück zum Zitat Zienkiewicz OC, Nithiarasu P, Codina R, Vazquez M, Ortiz P (1999) The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems. Int J Numer Methods Fluids 31(1):359–392MathSciNetCrossRef Zienkiewicz OC, Nithiarasu P, Codina R, Vazquez M, Ortiz P (1999) The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems. Int J Numer Methods Fluids 31(1):359–392MathSciNetCrossRef
78.
Zurück zum Zitat Zienkiewicz OC, Taylor RL, Nithiarasu P (2014) The finite element method for fluid dynamics, vol 3, 7th edn. Butterworth-Heinemann, OxfordMATH Zienkiewicz OC, Taylor RL, Nithiarasu P (2014) The finite element method for fluid dynamics, vol 3, 7th edn. Butterworth-Heinemann, OxfordMATH
Metadaten
Titel
A smoothed finite element approach for computational fluid dynamics: applications to incompressible flows and fluid–structure interaction
verfasst von
Tao He
Hexin Zhang
Kai Zhang
Publikationsdatum
23.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2018
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1549-x

Weitere Artikel der Ausgabe 5/2018

Computational Mechanics 5/2018 Zur Ausgabe

Neuer Inhalt