Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 10/2019

11.04.2019

A solvothermal induced self-assembling of SnO2/exfoliated graphite composite with enhanced lithium storage performances

verfasst von: Yong Li, Xiaomeng He, Yun Zhao, Changzhen Wang, Chunguang Gao, Yongxiang Zhao

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new solvothermal induced self-assembling method was investigated for the facile synthesis of SnO2/exfoliated graphite (EG) composite without any structure-directing agents. With the assistance of solvothermal treatment in an acetone-H2O mixture, ultra-small SnO2 nanoparticles of less than 10 nm could be transformed from a metastable state in colloidal solution to a highly-dispersed state on the inert surface of EG which was not acid-treated beforehand. The preparation conditions such as solvothermal time and SnO2 adding amount were found to be important factors influencing the structure and electrochemical performance of the composites. The half-sell using the SnO2/EG composite as an electrode exhibited a greatly enhanced lithium storage capacity of 910 mAh g−1 at the current density of 100 mA g−1 after 200 cycles and a moderate rate capability of 385 mAh g−1 at 1000 mA g−1. Compared with previous studies, this solvothermal induced self-assembling process supplies not only a promising anode material for newly advanced Li-ion batteries, but also a green and scalable approach for the preparation of metal oxide/carbon composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421 (2014)CrossRef S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421 (2014)CrossRef
2.
Zurück zum Zitat L. Liu, F. Xie, J. Lyu, T. Zhao, T. Li, B.G. Choi, Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries. J. Power Sources 321, 11 (2016)CrossRef L. Liu, F. Xie, J. Lyu, T. Zhao, T. Li, B.G. Choi, Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries. J. Power Sources 321, 11 (2016)CrossRef
3.
Zurück zum Zitat J.S. Chen, X.W. Lou, SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9, 1877 (2013)CrossRef J.S. Chen, X.W. Lou, SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9, 1877 (2013)CrossRef
4.
Zurück zum Zitat M. He, L. Yuan, X. Hu, W. Zhang, J. Shu, Y. Huang, A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries. Nanoscale 5, 3298 (2013)CrossRef M. He, L. Yuan, X. Hu, W. Zhang, J. Shu, Y. Huang, A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries. Nanoscale 5, 3298 (2013)CrossRef
5.
Zurück zum Zitat Y. Deng, C. Fang, G. Chen, The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: a review. J. Power Sources 304, 81 (2016)CrossRef Y. Deng, C. Fang, G. Chen, The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: a review. J. Power Sources 304, 81 (2016)CrossRef
6.
Zurück zum Zitat M.M. Zhao, Q.X. Zhao, J.Q. Qiu, H.G. Xue, H. Pang, Tin-based nanomaterials for electrochemical energy storage. RSC Adv. 6, 95449 (2016)CrossRef M.M. Zhao, Q.X. Zhao, J.Q. Qiu, H.G. Xue, H. Pang, Tin-based nanomaterials for electrochemical energy storage. RSC Adv. 6, 95449 (2016)CrossRef
7.
Zurück zum Zitat Y. Zhao, J. Li, N. Wang, C. Wu, G. Dong, L. Guan, Fully reversible conversion between SnO2 and Sn in SWNTs@SnO2@PPy coaxial nanocable as high performance anode material for lithium ion batteries. J. Phys. Chem. C 116, 18612 (2012)CrossRef Y. Zhao, J. Li, N. Wang, C. Wu, G. Dong, L. Guan, Fully reversible conversion between SnO2 and Sn in SWNTs@SnO2@PPy coaxial nanocable as high performance anode material for lithium ion batteries. J. Phys. Chem. C 116, 18612 (2012)CrossRef
8.
Zurück zum Zitat Q.S. Wang, J.Q. Xu, G.Y. Shen, Y.Q. Guo, X. Zhao, Y.J. Xia, H.B. Sun, P.Y. Hou, W.H. Xie, X.J. Xu, Large-scale carbon framework microbelts anchoring ultrafine SnO2 nanoparticles with enhanced lithium storage properties. Electrochim. Acta 297, 879 (2019)CrossRef Q.S. Wang, J.Q. Xu, G.Y. Shen, Y.Q. Guo, X. Zhao, Y.J. Xia, H.B. Sun, P.Y. Hou, W.H. Xie, X.J. Xu, Large-scale carbon framework microbelts anchoring ultrafine SnO2 nanoparticles with enhanced lithium storage properties. Electrochim. Acta 297, 879 (2019)CrossRef
9.
Zurück zum Zitat L.G. Yi, L. Liu, G.X. Guo, X.Y. Chen, Y. Zhang, S.Y. Yu, X.Y. Wang, Expanded graphite@SnO2@ polyaniline composite with enhanced performance as anode materials for lithium ion batteries. Electrochim. Acta 240, 63 (2017)CrossRef L.G. Yi, L. Liu, G.X. Guo, X.Y. Chen, Y. Zhang, S.Y. Yu, X.Y. Wang, Expanded graphite@SnO2@ polyaniline composite with enhanced performance as anode materials for lithium ion batteries. Electrochim. Acta 240, 63 (2017)CrossRef
10.
Zurück zum Zitat M. Shah, J. Lee, A.R. Park, Y. Choi, W.J. Kim, J. Park, C.H. Chung, J. Kim, B. Lim, P.J. Yoo, Ultra-fine SnO2 nanoparticles doubly embedded in amorphous carbon and reduced graphene oxide (rGO) for superior lithium storage. Electrochim. Acta 224, 201 (2017)CrossRef M. Shah, J. Lee, A.R. Park, Y. Choi, W.J. Kim, J. Park, C.H. Chung, J. Kim, B. Lim, P.J. Yoo, Ultra-fine SnO2 nanoparticles doubly embedded in amorphous carbon and reduced graphene oxide (rGO) for superior lithium storage. Electrochim. Acta 224, 201 (2017)CrossRef
11.
Zurück zum Zitat J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma, Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nanomicro Lett. 10, 21 (2017) J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma, Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nanomicro Lett. 10, 21 (2017)
12.
Zurück zum Zitat F. Wang, H. Jiao, E. He, S. Yang, Y. Chen, M. Zhao, X. Song, Facile synthesis of ultrafine SnO2 nanoparticles embedded in carbon networks as a high-performance anode for lithium-ion batteries. J. Power Sources 326, 78 (2016)CrossRef F. Wang, H. Jiao, E. He, S. Yang, Y. Chen, M. Zhao, X. Song, Facile synthesis of ultrafine SnO2 nanoparticles embedded in carbon networks as a high-performance anode for lithium-ion batteries. J. Power Sources 326, 78 (2016)CrossRef
13.
Zurück zum Zitat H. Liu, Carbon nanotubes anchored with SnO2 nanosheets as anode for enhanced Li-ion storage. J. Mater. Sci.: Mater. Electron. 25, 3353 (2014) H. Liu, Carbon nanotubes anchored with SnO2 nanosheets as anode for enhanced Li-ion storage. J. Mater. Sci.: Mater. Electron. 25, 3353 (2014)
14.
Zurück zum Zitat J. Wang, L. Wang, S. Zhang, S. Liang, X. Liang, H. Huang, W. Zhou, J. Guo, Facile synthesis of iron-doped SnO2/reduced graphene oxide composite as high-performance anode material for lithium-ion batteries. J. Alloy. Compd. 748, 1013 (2018)CrossRef J. Wang, L. Wang, S. Zhang, S. Liang, X. Liang, H. Huang, W. Zhou, J. Guo, Facile synthesis of iron-doped SnO2/reduced graphene oxide composite as high-performance anode material for lithium-ion batteries. J. Alloy. Compd. 748, 1013 (2018)CrossRef
15.
Zurück zum Zitat M. Sahoo, S. Ramaprabhu, One-pot environment-friendly synthesis of boron doped graphene-SnO2 for anodic performance in Li ion battery. Carbon 127, 627 (2018)CrossRef M. Sahoo, S. Ramaprabhu, One-pot environment-friendly synthesis of boron doped graphene-SnO2 for anodic performance in Li ion battery. Carbon 127, 627 (2018)CrossRef
16.
Zurück zum Zitat X.H. Liu, T.T. Ma, L. Sun, Y.S. Xu, J. Zhang, N. Pinna, Enhancing the lithium storage performance of graphene/SnO2 nanorods by a carbon-riveting strategy. Chemsuschem 11, 1321 (2018)CrossRef X.H. Liu, T.T. Ma, L. Sun, Y.S. Xu, J. Zhang, N. Pinna, Enhancing the lithium storage performance of graphene/SnO2 nanorods by a carbon-riveting strategy. Chemsuschem 11, 1321 (2018)CrossRef
17.
Zurück zum Zitat W. Zhang, M. Li, X. Xiao, X. Huang, Y. Jiang, X. Fan, L. Chen, In situ synthesis of ultrasmall SnO2 quantum dots on nitrogen-doped reduced graphene oxide composite as high performance anode material for lithium-ion batteries. J. Alloy. Compd. 727, 1 (2017)CrossRef W. Zhang, M. Li, X. Xiao, X. Huang, Y. Jiang, X. Fan, L. Chen, In situ synthesis of ultrasmall SnO2 quantum dots on nitrogen-doped reduced graphene oxide composite as high performance anode material for lithium-ion batteries. J. Alloy. Compd. 727, 1 (2017)CrossRef
18.
Zurück zum Zitat I. Elizabeth, R.B. Mathur, P.H. Maheshwari, B.P. Singh, S. Gopukumar, Development of SnO2/multiwalled carbon nanotube paper as free standing anode for lithium ion batteries (LIB). Electrochim. Acta 176, 735 (2015)CrossRef I. Elizabeth, R.B. Mathur, P.H. Maheshwari, B.P. Singh, S. Gopukumar, Development of SnO2/multiwalled carbon nanotube paper as free standing anode for lithium ion batteries (LIB). Electrochim. Acta 176, 735 (2015)CrossRef
19.
Zurück zum Zitat Z. Li, G. Wu, S. Deng, S. Wang, Y. Wang, J. Zhou, S. Liu, W. Wu, M. Wu, Combination of uniform SnO2 nanocrystals with nitrogen doped graphene for high-performance lithium-ion batteries anode. Chem. Eng. J. 283, 1435 (2016)CrossRef Z. Li, G. Wu, S. Deng, S. Wang, Y. Wang, J. Zhou, S. Liu, W. Wu, M. Wu, Combination of uniform SnO2 nanocrystals with nitrogen doped graphene for high-performance lithium-ion batteries anode. Chem. Eng. J. 283, 1435 (2016)CrossRef
20.
Zurück zum Zitat Y. Li, Y. Zhao, C. Ma, Y. Zhao, Novel solvent-thermal preparation of a SnO2 nanoparticles/expanded graphite multiscale composite with extremely enhanced electrical performances for Li-ion batteries. Electrochim. Acta 218, 191 (2016)CrossRef Y. Li, Y. Zhao, C. Ma, Y. Zhao, Novel solvent-thermal preparation of a SnO2 nanoparticles/expanded graphite multiscale composite with extremely enhanced electrical performances for Li-ion batteries. Electrochim. Acta 218, 191 (2016)CrossRef
21.
Zurück zum Zitat X. Lu, H. Wang, Z. Wang, Y. Jiang, D. Cao, G. Yang, Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex situ deposition on carbon nanotubes as anode materials for lithium ion batteries. J. Alloy. Compd. 680, 109 (2016)CrossRef X. Lu, H. Wang, Z. Wang, Y. Jiang, D. Cao, G. Yang, Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex situ deposition on carbon nanotubes as anode materials for lithium ion batteries. J. Alloy. Compd. 680, 109 (2016)CrossRef
22.
Zurück zum Zitat X. Zhang, J. Zhang, Y. Liu, X. Wang, B. Li, Improving the anode performances of TiO2–carbon–rGO composites in lithium ion batteries by UV irradiation. New J. Chem. 39, 9345 (2015)CrossRef X. Zhang, J. Zhang, Y. Liu, X. Wang, B. Li, Improving the anode performances of TiO2–carbon–rGO composites in lithium ion batteries by UV irradiation. New J. Chem. 39, 9345 (2015)CrossRef
23.
Zurück zum Zitat C. Ma, C. Ma, J. Wang, H. Wang, J. Shi, Y. Song, Q. Guo, L. Liu, Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes. Carbon 72, 38 (2014)CrossRef C. Ma, C. Ma, J. Wang, H. Wang, J. Shi, Y. Song, Q. Guo, L. Liu, Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes. Carbon 72, 38 (2014)CrossRef
24.
Zurück zum Zitat Y. Zhao, C. Ma, Y. Li, H. Chen, Z. Shao, Self-adhesive Co3O4/expanded graphite paper as high-performance flexible anode for Li-ion batteries. Carbon 95, 494 (2015)CrossRef Y. Zhao, C. Ma, Y. Li, H. Chen, Z. Shao, Self-adhesive Co3O4/expanded graphite paper as high-performance flexible anode for Li-ion batteries. Carbon 95, 494 (2015)CrossRef
25.
Zurück zum Zitat M. Zhang, D. Lei, Z. Du, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. J. Mater. Chem. 21, 1673 (2011)CrossRef M. Zhang, D. Lei, Z. Du, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. J. Mater. Chem. 21, 1673 (2011)CrossRef
26.
Zurück zum Zitat C. Zhang, X. Peng, Z. Guo, C. Cai, Z. Chen, D. Wexler, S. Li, H. Liu, Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon 50, 1897 (2012)CrossRef C. Zhang, X. Peng, Z. Guo, C. Cai, Z. Chen, D. Wexler, S. Li, H. Liu, Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon 50, 1897 (2012)CrossRef
27.
Zurück zum Zitat Y. Zhao, Y. Li, C. Ma, Z. Shao, Micro-/nano-structured hybrid of exfoliated graphite and Co3O4 nanoparticles as high-performance anode material for Li-ion batteries. Electrochim. Acta 213, 98 (2016)CrossRef Y. Zhao, Y. Li, C. Ma, Z. Shao, Micro-/nano-structured hybrid of exfoliated graphite and Co3O4 nanoparticles as high-performance anode material for Li-ion batteries. Electrochim. Acta 213, 98 (2016)CrossRef
28.
Zurück zum Zitat H. Kim, G.O. Park, Y. Kim, S. Muhammad, J. Yoo, M. Balasubramanian, Y.-H. Cho, M.-G. Kim, B. Lee, K. Kang, H. Kim, J.M. Kim, W.-S. Yoon, New insight into the reaction mechanism for exceptional capacity of ordered mesoporous SnO2 electrodes via synchrotron-based X-ray analysis. Chem. Mater. 26, 6361 (2014)CrossRef H. Kim, G.O. Park, Y. Kim, S. Muhammad, J. Yoo, M. Balasubramanian, Y.-H. Cho, M.-G. Kim, B. Lee, K. Kang, H. Kim, J.M. Kim, W.-S. Yoon, New insight into the reaction mechanism for exceptional capacity of ordered mesoporous SnO2 electrodes via synchrotron-based X-ray analysis. Chem. Mater. 26, 6361 (2014)CrossRef
29.
Zurück zum Zitat S. Li, W. Xie, S. Wang, X. Jiang, S. Peng, D. He, Facile synthesis of rGO/SnO2composite anodes for lithium ion batteries. J. Mater. Chem. A 2, 17139 (2014)CrossRef S. Li, W. Xie, S. Wang, X. Jiang, S. Peng, D. He, Facile synthesis of rGO/SnO2composite anodes for lithium ion batteries. J. Mater. Chem. A 2, 17139 (2014)CrossRef
30.
Zurück zum Zitat Z. Wang, D. Luan, S. Madhavi, Y. Hu, X.W. Lou, Assembling carbon-coated [small alpha]-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci. 5, 5252 (2012)CrossRef Z. Wang, D. Luan, S. Madhavi, Y. Hu, X.W. Lou, Assembling carbon-coated [small alpha]-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci. 5, 5252 (2012)CrossRef
31.
Zurück zum Zitat S.-L. Chou, J.-Z. Wang, D. Wexler, K. Konstantinov, C. Zhong, H.-K. Liu, S.-X. Dou, High-surface-area [small alpha]-Fe2O3/carbon nanocomposite: one-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. J. Mater. Chem. 20, 2092 (2010)CrossRef S.-L. Chou, J.-Z. Wang, D. Wexler, K. Konstantinov, C. Zhong, H.-K. Liu, S.-X. Dou, High-surface-area [small alpha]-Fe2O3/carbon nanocomposite: one-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. J. Mater. Chem. 20, 2092 (2010)CrossRef
32.
Zurück zum Zitat Q. Tian, Y. Tian, Z. Zhang, L. Yang, S.-I. Hirano, Fabrication of CNT@void@SnO2@C with tube-in-tube nanostructure as high-performance anode for lithium-ion batteries. J. Power Sources 291, 173 (2015)CrossRef Q. Tian, Y. Tian, Z. Zhang, L. Yang, S.-I. Hirano, Fabrication of CNT@void@SnO2@C with tube-in-tube nanostructure as high-performance anode for lithium-ion batteries. J. Power Sources 291, 173 (2015)CrossRef
33.
Zurück zum Zitat A. Ponrouch, P.-L. Taberna, P. Simon, M.R. Palacín, On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction. Electrochim. Acta 61, 13 (2012)CrossRef A. Ponrouch, P.-L. Taberna, P. Simon, M.R. Palacín, On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction. Electrochim. Acta 61, 13 (2012)CrossRef
34.
Zurück zum Zitat H. Liu, J. Huang, X. Li, J. Liu, Y. Zhang, K. Du, Flower-like SnO2/graphene composite for high-capacity lithium storage. Appl. Surf. Sci. 258, 4917 (2012)CrossRef H. Liu, J. Huang, X. Li, J. Liu, Y. Zhang, K. Du, Flower-like SnO2/graphene composite for high-capacity lithium storage. Appl. Surf. Sci. 258, 4917 (2012)CrossRef
35.
Zurück zum Zitat H. Liu, J. Huang, X. Li, J. Liu, Y. Zhang, SnO2 nanorods grown on graphite as a high-capacity anode material for lithium ion batteries. Ceram. Int. 38, 5145 (2012)CrossRef H. Liu, J. Huang, X. Li, J. Liu, Y. Zhang, SnO2 nanorods grown on graphite as a high-capacity anode material for lithium ion batteries. Ceram. Int. 38, 5145 (2012)CrossRef
36.
Zurück zum Zitat B. Li, H. Cao, J. Zhang, M. Qu, F. Lian, X. Kong, SnO2–carbon–RGO heterogeneous electrode materials with enhanced anode performances in lithium ion batteries. J. Mater. Chem. 22, 2851 (2012)CrossRef B. Li, H. Cao, J. Zhang, M. Qu, F. Lian, X. Kong, SnO2–carbon–RGO heterogeneous electrode materials with enhanced anode performances in lithium ion batteries. J. Mater. Chem. 22, 2851 (2012)CrossRef
37.
Zurück zum Zitat N. Naresh, D. Narsimulu, P. Jena, E.S. Srinadhu, N. Satyanarayana, Microwave-assisted hydrothermal synthesis of SnO2/reduced graphene-oxide nanocomposite as anode material for high performance lithium-ion batteries. J. Mater. Sci.: Mater. Electron. 29, 14723 (2018) N. Naresh, D. Narsimulu, P. Jena, E.S. Srinadhu, N. Satyanarayana, Microwave-assisted hydrothermal synthesis of SnO2/reduced graphene-oxide nanocomposite as anode material for high performance lithium-ion batteries. J. Mater. Sci.: Mater. Electron. 29, 14723 (2018)
38.
Zurück zum Zitat N. Wu, W. Du, X. Gao, L. Zhao, G. Liu, X. Liu, H. Wu, Y.B. He, Hollow SnO2 nanospheres with oxygen vacancies entrapped by a N-doped graphene network as robust anode materials for lithium-ion batteries. Nanoscale 10, 11460 (2018)CrossRef N. Wu, W. Du, X. Gao, L. Zhao, G. Liu, X. Liu, H. Wu, Y.B. He, Hollow SnO2 nanospheres with oxygen vacancies entrapped by a N-doped graphene network as robust anode materials for lithium-ion batteries. Nanoscale 10, 11460 (2018)CrossRef
39.
Zurück zum Zitat Z. Zhang, L. Wang, J. Xiao, F. Xiao, S. Wang, One-pot synthesis of three-dimensional graphene/carbon nanotube/SnO2 hybrid architectures with enhanced lithium storage properties. ACS Appl. Mater. Interfaces 7, 17963 (2015)CrossRef Z. Zhang, L. Wang, J. Xiao, F. Xiao, S. Wang, One-pot synthesis of three-dimensional graphene/carbon nanotube/SnO2 hybrid architectures with enhanced lithium storage properties. ACS Appl. Mater. Interfaces 7, 17963 (2015)CrossRef
40.
Zurück zum Zitat M. Gao, X. Chen, H. Pan, L. Xiang, F. Wu, Y. Liu, Ultrafine SnO2 dispersed carbon matrix composites derived by a sol–gel method as anode materials for lithium ion batteries. Electrochim. Acta 55, 9067 (2010)CrossRef M. Gao, X. Chen, H. Pan, L. Xiang, F. Wu, Y. Liu, Ultrafine SnO2 dispersed carbon matrix composites derived by a sol–gel method as anode materials for lithium ion batteries. Electrochim. Acta 55, 9067 (2010)CrossRef
41.
Zurück zum Zitat S.-D. Xu, Q.-C. Zhuang, L.-L. Tian, Y.-P. Qin, L. Fang, S.-G. Sun, Impedance spectra of nonhomogeneous, multilayered porous composite graphite electrodes for Li-ion batteries: experimental and theoretical studies. J. Phys. Chem. C 115, 9210 (2011)CrossRef S.-D. Xu, Q.-C. Zhuang, L.-L. Tian, Y.-P. Qin, L. Fang, S.-G. Sun, Impedance spectra of nonhomogeneous, multilayered porous composite graphite electrodes for Li-ion batteries: experimental and theoretical studies. J. Phys. Chem. C 115, 9210 (2011)CrossRef
42.
Zurück zum Zitat M.-S. Park, Y.-M. Kang, G.-X. Wang, S.-X. Dou, H.-K. Liu, The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 18, 455 (2008)CrossRef M.-S. Park, Y.-M. Kang, G.-X. Wang, S.-X. Dou, H.-K. Liu, The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 18, 455 (2008)CrossRef
43.
Zurück zum Zitat J.G. Kim, S.H. Nam, S.H. Lee, S.M. Choi, W.B. Kim, SnO2 nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage. ACS Appl. Mater. Interfaces 3, 828 (2011)CrossRef J.G. Kim, S.H. Nam, S.H. Lee, S.M. Choi, W.B. Kim, SnO2 nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage. ACS Appl. Mater. Interfaces 3, 828 (2011)CrossRef
Metadaten
Titel
A solvothermal induced self-assembling of SnO2/exfoliated graphite composite with enhanced lithium storage performances
verfasst von
Yong Li
Xiaomeng He
Yun Zhao
Changzhen Wang
Chunguang Gao
Yongxiang Zhao
Publikationsdatum
11.04.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 10/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01306-z

Weitere Artikel der Ausgabe 10/2019

Journal of Materials Science: Materials in Electronics 10/2019 Zur Ausgabe

Neuer Inhalt