Skip to main content
Erschienen in: Journal of Computational Electronics 3/2020

25.04.2020

A source/drain-on-insulator structure to improve the performance of stacked nanosheet field-effect transistors

verfasst von: V. Jegadheesan, K. Sivasankaran

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For continued scaling with silicon, the stacked nanosheet field-effect transistor (SNSH-FET) is considered to be a major candidate for sub-7-nm technology. The radiofrequency (RF)/analog performance of a three-channel SNSH-FET is studied herein and benchmarked against a fin-shaped field-effect transistor (FinFET) at 7-nm technology and having the same footprint on the wafer. In the existing SNSH-FET on a bulk substrate, the source/drain junction formed on the bulk substrate contributes extra capacitance. An SNSH-FET structure with a source/drain-on-insulator (SDOI) configuration is presented herein, incorporating an extra channel (channel 4) on the bulk. Channel 4 has a supersteep retrograde (SSR) doping profile, which is achieved by placing a 10-nm-thick lightly doped silicon layer (SSR buffer layer) on the ground plane or a punchthrough-stopper (PTS) doped Si substrate. The parasitic source/drain junction capacitance and leakage under channel 4 are alleviated by growing a 10-nm-thick insulator layer before the in situ doped source/drain epiregion (a configuration referred to as SDOI). The presented structure has the same capacitance as the existing three-channel SNSH-FET on a PTS-Si substrate but with a 6% enhanced drive current, thereby achieving an improvement in terms of the delay and RF/analog performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Loubet, N., et al.: Stacked nanosheet gate-all around transistor to enable scaling beyond FinFET. In: Proceedings of IEEE Symposium on VLSI Technology Digest of Technical Papers (2017) Loubet, N., et al.: Stacked nanosheet gate-all around transistor to enable scaling beyond FinFET. In: Proceedings of IEEE Symposium on VLSI Technology Digest of Technical Papers (2017)
2.
Zurück zum Zitat Lee, B.-H., Ahn, D.-C., Kang, M.-H., Jeon, S.-B., Choi, Y.-K.: Vertically integrated nanowire-based unified memory. Nano Lett. 16, 5909–5916 (2016)CrossRef Lee, B.-H., Ahn, D.-C., Kang, M.-H., Jeon, S.-B., Choi, Y.-K.: Vertically integrated nanowire-based unified memory. Nano Lett. 16, 5909–5916 (2016)CrossRef
3.
Zurück zum Zitat Ernst, T., Dupré, C., Isheden, C., Bernard, E., et al.: Novel 3D integration process for highly scalable nano-beam stacked-channels GAA (NBG) FinFETs with HfO2/TiN gate stack. In: IEDM (2006) Ernst, T., Dupré, C., Isheden, C., Bernard, E., et al.: Novel 3D integration process for highly scalable nano-beam stacked-channels GAA (NBG) FinFETs with HfO2/TiN gate stack. In: IEDM (2006)
4.
Zurück zum Zitat Fang, W.W., Singh, N., Bera, L.K., Nguyen, H.S., Rustagi, S.C., Lo, G.Q., Balasubramanian, N., Kwong, D.-L.: Vertically stacked SiGe nanowire array channel CMOS transistors. IEEE Electron Device Lett. 28, 211–213 (2007)CrossRef Fang, W.W., Singh, N., Bera, L.K., Nguyen, H.S., Rustagi, S.C., Lo, G.Q., Balasubramanian, N., Kwong, D.-L.: Vertically stacked SiGe nanowire array channel CMOS transistors. IEEE Electron Device Lett. 28, 211–213 (2007)CrossRef
5.
Zurück zum Zitat Bernard, E., Ernst, T., et al.: Impact of the gate stack on the electrical performances of 3D multi-channel MOSFET (MCFET) on SOI. Solid-State Electron. 52, 1297–1302 (2008)CrossRef Bernard, E., Ernst, T., et al.: Impact of the gate stack on the electrical performances of 3D multi-channel MOSFET (MCFET) on SOI. Solid-State Electron. 52, 1297–1302 (2008)CrossRef
6.
Zurück zum Zitat Mertens, H., et.al.: Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates. In: Proceedings of IEEE Symposium On VLSI Technology Digest of Technical Papers (2016) Mertens, H., et.al.: Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates. In: Proceedings of IEEE Symposium On VLSI Technology Digest of Technical Papers (2016)
8.
Zurück zum Zitat Jegadheesan, V., Sivasankaran, K., Konar, A.: Impact of geometrical parameters and substrate on analog/RF performance of stacked nanosheet field effect transistor. Mater. Sci. Semicond. Process. 93, 188–195 (2019)CrossRef Jegadheesan, V., Sivasankaran, K., Konar, A.: Impact of geometrical parameters and substrate on analog/RF performance of stacked nanosheet field effect transistor. Mater. Sci. Semicond. Process. 93, 188–195 (2019)CrossRef
9.
Zurück zum Zitat Jegadheesan, V., Sivasankaran, K., Konar, A.: Random dopant fluctuations impact reduction in 7 nm Bulk-FinFET by substrate engineering. Int. J. Mater. Prod. Technol. 59, 339–346 (2019)CrossRef Jegadheesan, V., Sivasankaran, K., Konar, A.: Random dopant fluctuations impact reduction in 7 nm Bulk-FinFET by substrate engineering. Int. J. Mater. Prod. Technol. 59, 339–346 (2019)CrossRef
10.
Zurück zum Zitat Yoon, J.-S., Jeong, J., Lee, S., Baek, R.-H.: Bottom oxide bulk FinFETs without punch-through-stopper for extending toward 5-nm node. IEEE Access 7, 75762–75767 (2019)CrossRef Yoon, J.-S., Jeong, J., Lee, S., Baek, R.-H.: Bottom oxide bulk FinFETs without punch-through-stopper for extending toward 5-nm node. IEEE Access 7, 75762–75767 (2019)CrossRef
11.
Zurück zum Zitat Jegadheesan, V., Sivasankaran, K.: Influence of RDF and MGG induced variability on performance of 7 nm multi-gate transistors with metal/high-k gate stack. ECS J. Solid State Sci. Technol. 7, 171 (2018)CrossRef Jegadheesan, V., Sivasankaran, K.: Influence of RDF and MGG induced variability on performance of 7 nm multi-gate transistors with metal/high-k gate stack. ECS J. Solid State Sci. Technol. 7, 171 (2018)CrossRef
12.
Zurück zum Zitat International Technology Roadmap for Semiconductors, 2015 edition International Technology Roadmap for Semiconductors, 2015 edition
13.
Zurück zum Zitat Yan, R.-H., Ourmazd, A., Lee, K.F.: Scaling the Si MOSFET: from bulk to SO1 to bulk. IEEE Trans. Electron Devices 39(7), 1704–1710 (1992)CrossRef Yan, R.-H., Ourmazd, A., Lee, K.F.: Scaling the Si MOSFET: from bulk to SO1 to bulk. IEEE Trans. Electron Devices 39(7), 1704–1710 (1992)CrossRef
14.
Zurück zum Zitat Noda, K., Tatsumi, T., Uchida, T., Nakajima, K., Miyamoto, H., Hu, C.: A 0.1-m delta-doped MOSFET fabricated with post-low-energy implanting selective epitaxy. IEEE Trans. Electron Devices 45(4), 809–814 (1998)CrossRef Noda, K., Tatsumi, T., Uchida, T., Nakajima, K., Miyamoto, H., Hu, C.: A 0.1-m delta-doped MOSFET fabricated with post-low-energy implanting selective epitaxy. IEEE Trans. Electron Devices 45(4), 809–814 (1998)CrossRef
15.
Zurück zum Zitat Asenov, A., Saini, S.: Suppression of random dopant-induced threshold voltage fluctuations in Sub-0.1-m MOSFET's with epitaxial and -doped channels. IEEE Trans. Electron Devices 46(8), 1718–1724 (1999)CrossRef Asenov, A., Saini, S.: Suppression of random dopant-induced threshold voltage fluctuations in Sub-0.1-m MOSFET's with epitaxial and -doped channels. IEEE Trans. Electron Devices 46(8), 1718–1724 (1999)CrossRef
17.
Zurück zum Zitat Ancona, M.G., Tiersten, H.F.: Macroscopic physics of the silicon inversion layer. Phys. Rev. B 35(15), 7959–7965 (1987)CrossRef Ancona, M.G., Tiersten, H.F.: Macroscopic physics of the silicon inversion layer. Phys. Rev. B 35(15), 7959–7965 (1987)CrossRef
18.
Zurück zum Zitat Ancona, M.G., Iafrate, G.J.: Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B 39(13), 9536–9540 (1989)CrossRef Ancona, M.G., Iafrate, G.J.: Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B 39(13), 9536–9540 (1989)CrossRef
20.
Zurück zum Zitat Canali, C., Majni, G., Minder, R., Ottavian, G.: Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. IEEE Trans. Electron Devices ED-22(11), 1045–1047 (1975)CrossRef Canali, C., Majni, G., Minder, R., Ottavian, G.: Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. IEEE Trans. Electron Devices ED-22(11), 1045–1047 (1975)CrossRef
21.
Zurück zum Zitat Slotboom, J.W., de Graaff, H.C.: Measurements of bandgap narrowing in Si bipolar transistors. Solid-State Electron. 19(10), 857–862 (1976)CrossRef Slotboom, J.W., de Graaff, H.C.: Measurements of bandgap narrowing in Si bipolar transistors. Solid-State Electron. 19(10), 857–862 (1976)CrossRef
22.
Zurück zum Zitat Shockley, W., Read Jr., W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)CrossRef Shockley, W., Read Jr., W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)CrossRef
23.
Zurück zum Zitat Karner, M., Baumgartner, O., Stanojevic, Z., Schanovsky, F., Strof, G., Kernstock, C., Karner, H.W., Rzepa, G., Grasser, T.: Vertically stacked nanowire MOSFETs for sub-10 nm nodes: advanced topography, device, variability, and reliability simulations. In: IEEE IEDM Conference (2016) Karner, M., Baumgartner, O., Stanojevic, Z., Schanovsky, F., Strof, G., Kernstock, C., Karner, H.W., Rzepa, G., Grasser, T.: Vertically stacked nanowire MOSFETs for sub-10 nm nodes: advanced topography, device, variability, and reliability simulations. In: IEEE IEDM Conference (2016)
24.
Zurück zum Zitat Jegadheesan, V., Sivasankaran, K.: RF stability performance of SOI junctionless FinFET and impact of process variation. Microelectron. J. 59, 15–21 (2017)CrossRef Jegadheesan, V., Sivasankaran, K.: RF stability performance of SOI junctionless FinFET and impact of process variation. Microelectron. J. 59, 15–21 (2017)CrossRef
25.
Zurück zum Zitat Mason, S.: Power gain in feedback amplifier. Trans. IRE Prof. Group Circuit Theory CT-1 2, 20–25 (1954)CrossRef Mason, S.: Power gain in feedback amplifier. Trans. IRE Prof. Group Circuit Theory CT-1 2, 20–25 (1954)CrossRef
26.
Zurück zum Zitat Scwierz, F., Liou, J.J.: Semiconductor devices for RF applications: evaluation and current status. Microelectron. Reliab. 41, 145–168 (2001)CrossRef Scwierz, F., Liou, J.J.: Semiconductor devices for RF applications: evaluation and current status. Microelectron. Reliab. 41, 145–168 (2001)CrossRef
27.
Zurück zum Zitat Md Arshad, M.K., Kilchytska, V., Emam, M., Andrieu, F., Flandre, D., Raskin, J.-P.: Effect of parasitic elements on UTBB FD SOI MOSFETs RF figures of merit. Solid-State Electron. 97, 38–44 (2014)CrossRef Md Arshad, M.K., Kilchytska, V., Emam, M., Andrieu, F., Flandre, D., Raskin, J.-P.: Effect of parasitic elements on UTBB FD SOI MOSFETs RF figures of merit. Solid-State Electron. 97, 38–44 (2014)CrossRef
28.
Zurück zum Zitat Bansal, A.K., Kumar, M., Gupta, C., Hook, T.B., Dixit, A.: Series resistance reduction with linearity assessment for vertically stacked junctionless accumulation mode nanowire FET. IEEE Trans. Electron Devices 65(8), 3548–3554 (2018)CrossRef Bansal, A.K., Kumar, M., Gupta, C., Hook, T.B., Dixit, A.: Series resistance reduction with linearity assessment for vertically stacked junctionless accumulation mode nanowire FET. IEEE Trans. Electron Devices 65(8), 3548–3554 (2018)CrossRef
29.
Zurück zum Zitat Chew, S.-A., Yu., H, et al.: Ultralow resistive wrap around contact to scaled FinFET devices by using ALD-Ti contact metal. In: 2017 IEEE International Interconnect Technology Conference (IITC) (2017) Chew, S.-A., Yu., H, et al.: Ultralow resistive wrap around contact to scaled FinFET devices by using ALD-Ti contact metal. In: 2017 IEEE International Interconnect Technology Conference (IITC) (2017)
30.
Zurück zum Zitat Dambrine, G., et al.: What are the limiting parameters of deep-submicron MOSFETs for high frequency applications? IEEE Electron Device Lett. 24(3), 189–191 (2003)CrossRef Dambrine, G., et al.: What are the limiting parameters of deep-submicron MOSFETs for high frequency applications? IEEE Electron Device Lett. 24(3), 189–191 (2003)CrossRef
Metadaten
Titel
A source/drain-on-insulator structure to improve the performance of stacked nanosheet field-effect transistors
verfasst von
V. Jegadheesan
K. Sivasankaran
Publikationsdatum
25.04.2020
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2020
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-020-01502-9

Weitere Artikel der Ausgabe 3/2020

Journal of Computational Electronics 3/2020 Zur Ausgabe

Neuer Inhalt