Skip to main content
Erschienen in: Wireless Networks 8/2019

22.08.2019

A spatial clustering group division-based OFDMA access protocol for the next generation WLAN

verfasst von: Yong Li, Bo Li, Mao Yang, Zhongjiang Yan

Erschienen in: Wireless Networks | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The next generation wireless local area network (WLAN) needs to significantly improve the area throughput in high-dense deployment scenario. Orthogonal frequency division multiple access (OFDMA), considered as the key technology of the next generation WLAN, has been adopted by IEEE 802.11ax. However, most existing studies have one tricky problem: interference extension problem, i.e., the stations (STAs) placed at dispersive locations from one basic service set (BSS) access channel and transmit data simultaneously through OFDMA, thereby interfering a large area and suppressing the potential transmissions around this BSS. Unfortunately, high-dense deployment scenario exacerbates interference extension problem. This article proposes a spatial clustering group division-based OFDMA (SCGD-OFDMA) protocol, which enables the geographically close STAs to form spatial clustering groups, named SCGs. Each SCG has a leader STA and several member STAs. Each SCG’s leader STA contends for channel resources. After that, the leader STAs that successfully contending channel are scheduled by the access point one by one to trigger its member STAs to transmit uplink data by using OFDMA. Therefore, the geographical interference area is reduced and the area throughput is improved since the concurrent STAs in one SCG are located in limited area. This article theoretically analyzes the optimal SCG establishment, and throughput and area throughput of SCGD-OFDMA. Theoretical analysis is consistent with simulation results. The simulation results also show that when the number of STAs is 200 and all resource units are used for random access, SCGD-OFDMA outperforms IEEE 802.11ax and OMAX in area throughput by 56.13% and 190.97%, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sun, W., et al. (2014). Wi-Fi could be much more. IEEE Communications Magazine, 52(11), 22–29.CrossRef Sun, W., et al. (2014). Wi-Fi could be much more. IEEE Communications Magazine, 52(11), 22–29.CrossRef
2.
Zurück zum Zitat Bellalta, B. (2016). IEEE 802.11ax: High-efficiency WLANS. IEEE Wireless Communications, 23(1), 38–46.CrossRef Bellalta, B. (2016). IEEE 802.11ax: High-efficiency WLANS. IEEE Wireless Communications, 23(1), 38–46.CrossRef
3.
Zurück zum Zitat Deng, D. J., et al. (2017). IEEE 802.11ax: Highly efficient WLANs for intelligent information infrastructure. IEEE Communications Magazine, 55(12), 52–59.CrossRef Deng, D. J., et al. (2017). IEEE 802.11ax: Highly efficient WLANs for intelligent information infrastructure. IEEE Communications Magazine, 55(12), 52–59.CrossRef
4.
Zurück zum Zitat Gallo, P., Kosek-Szott, K., Szott, S., & Tinnirello, I. (2018). CADWAN: A control architecture for dense WiFi access networks. IEEE Communications Magazine, 56(1), 194–201.CrossRef Gallo, P., Kosek-Szott, K., Szott, S., & Tinnirello, I. (2018). CADWAN: A control architecture for dense WiFi access networks. IEEE Communications Magazine, 56(1), 194–201.CrossRef
5.
Zurück zum Zitat Li, B., Qu, Q., Yan, Z., & Yang, M. (2015). Survey on OFDMA based MAC protocols for the next generation WLAN. In 2015 IEEE wireless communications and networking conference workshops (WCNCW), New Orleans, LA, 2015 (pp. 131–135). Li, B., Qu, Q., Yan, Z., & Yang, M. (2015). Survey on OFDMA based MAC protocols for the next generation WLAN. In 2015 IEEE wireless communications and networking conference workshops (WCNCW), New Orleans, LA, 2015 (pp. 131–135).
6.
Zurück zum Zitat Qu, Q., Li, B., Yang, M., & Yan, Z. (2015). An OFDMA based concurrent multiuser MAC for upcoming IEEE 802.11ax. In 2015 IEEE wireless communications and networking conference workshops (WCNCW), New Orleans, LA, 2015 (pp. 136–141). Qu, Q., Li, B., Yang, M., & Yan, Z. (2015). An OFDMA based concurrent multiuser MAC for upcoming IEEE 802.11ax. In 2015 IEEE wireless communications and networking conference workshops (WCNCW), New Orleans, LA, 2015 (pp. 136–141).
8.
Zurück zum Zitat Yang, M., Li, B., Bai, Z., et al. (2018). SGMA: Semi-granted multiple access for non-orthogonal multiple access (NOMA) in 5G networking. Journal of Network and Computer Applications, 112, 115–125.CrossRef Yang, M., Li, B., Bai, Z., et al. (2018). SGMA: Semi-granted multiple access for non-orthogonal multiple access (NOMA) in 5G networking. Journal of Network and Computer Applications, 112, 115–125.CrossRef
9.
Zurück zum Zitat Karaca, M., Bastani, S., & Landfeldt, B. (2017). Modifying backoff freezing mechanism to optimize dense IEEE 802.11 networks. IEEE Transactions on Vehicular Technology, 66(10), 9470–9482.CrossRef Karaca, M., Bastani, S., & Landfeldt, B. (2017). Modifying backoff freezing mechanism to optimize dense IEEE 802.11 networks. IEEE Transactions on Vehicular Technology, 66(10), 9470–9482.CrossRef
10.
Zurück zum Zitat Afaqui, M. S., Garcia-Villegas, E., & Lopez-Aguiler, E. A. (2017). IEEE 802.11ax: Challenges and requirements for future high efficiency WiFi. IEEE Wireless Communications, 24(3), 130–137.CrossRef Afaqui, M. S., Garcia-Villegas, E., & Lopez-Aguiler, E. A. (2017). IEEE 802.11ax: Challenges and requirements for future high efficiency WiFi. IEEE Wireless Communications, 24(3), 130–137.CrossRef
11.
Zurück zum Zitat IEEE 802.11 working group of the LAN/MAN standards committee of the IEEE computer society. (2019). IEEE 802.11ax proposed draft 4.0. http://standards.ieee.org. Accessed 10 July 2019. IEEE 802.11 working group of the LAN/MAN standards committee of the IEEE computer society. (2019). IEEE 802.11ax proposed draft 4.0. http://​standards.​ieee.​org. Accessed 10 July 2019.
12.
Zurück zum Zitat Jung, J., & Lim, J. (2012). Group contention-based OFDMA MAC protocol for multiple access interference-free in WLAN systems. IEEE Transactions on Wireless Communications, 11(2), 648–658.CrossRef Jung, J., & Lim, J. (2012). Group contention-based OFDMA MAC protocol for multiple access interference-free in WLAN systems. IEEE Transactions on Wireless Communications, 11(2), 648–658.CrossRef
13.
Zurück zum Zitat Deng, D. J., Lien, S. Y., Lee, J., & Chen, K. C. (2016). On quality-of-service provisioning in IEEE 802.11ax WLANs. IEEE Access, 4, 6086–6104.CrossRef Deng, D. J., Lien, S. Y., Lee, J., & Chen, K. C. (2016). On quality-of-service provisioning in IEEE 802.11ax WLANs. IEEE Access, 4, 6086–6104.CrossRef
14.
Zurück zum Zitat Lee, J., & Kim, C. (2017). An efficient multiple access coordination scheme for OFDMA WLAN. IEEE Communications Letters, 21(3), 596–599.CrossRef Lee, J., & Kim, C. (2017). An efficient multiple access coordination scheme for OFDMA WLAN. IEEE Communications Letters, 21(3), 596–599.CrossRef
15.
Zurück zum Zitat Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. In IEEE P802.11ax draft 1.2 (2017, April). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. In IEEE P802.11ax draft 1.2 (2017, April).
17.
Zurück zum Zitat Deng, D. J., Chen, K. C., & Cheng, R. S. (2014). IEEE 802.11ax: Next generation wireless local area networks. In 10th international conference on hetero-geneous networking for quality, reliability, security and robustness, 2014 (pp. 77–82). Deng, D. J., Chen, K. C., & Cheng, R. S. (2014). IEEE 802.11ax: Next generation wireless local area networks. In 10th international conference on hetero-geneous networking for quality, reliability, security and robustness, 2014 (pp. 77–82).
18.
Zurück zum Zitat Qu, Q., Li, B., & Yang, M., et al. (2018). Survey and performance evaluation of the upcoming next generation WLAN standard-IEEE 802.11 ax (pp. 1–155) (2018). arXiv preprint arXiv:1806.05908. Qu, Q., Li, B., & Yang, M., et al. (2018). Survey and performance evaluation of the upcoming next generation WLAN standard-IEEE 802.11 ax (pp. 1–155) (2018). arXiv preprint arXiv:​1806.​05908.
19.
Zurück zum Zitat IEEE 802.11ax Task Group, IEEE P802.11ax D2.0. Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements (pp. 1–596) (2017). IEEE 802.11ax Task Group, IEEE P802.11ax D2.0. Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements (pp. 1–596) (2017).
20.
Zurück zum Zitat Li, Y., Li, B., Yang, M., & Yan, Z. (2017). Spatial clustering group based OFDMA multiple access scheme for the next generation WLAN. In 3rd EAI international conference on IoT as a service (IoTaaS 2017), Taiwan, 2017 (pp. 1–8). Li, Y., Li, B., Yang, M., & Yan, Z. (2017). Spatial clustering group based OFDMA multiple access scheme for the next generation WLAN. In 3rd EAI international conference on IoT as a service (IoTaaS 2017), Taiwan, 2017 (pp. 1–8).
21.
Zurück zum Zitat Kwon, H., Seo, H., Kim, S., & Lee, B. G. (2009). Generalized CSMA/CA for OFDMA systems: Protocol design, throughput analysis, and implementation issues. IEEE Transactions on Wireless Communications, 8(8), 4176–4187.CrossRef Kwon, H., Seo, H., Kim, S., & Lee, B. G. (2009). Generalized CSMA/CA for OFDMA systems: Protocol design, throughput analysis, and implementation issues. IEEE Transactions on Wireless Communications, 8(8), 4176–4187.CrossRef
22.
Zurück zum Zitat Kwon, H., Kim, S., & Lee, B. G. (2010). Opportunistic multi-channel CSMA protocol for OFDMA systems. IEEE Transactions on Wireless Communications, 9(5), 1552–1557.CrossRef Kwon, H., Kim, S., & Lee, B. G. (2010). Opportunistic multi-channel CSMA protocol for OFDMA systems. IEEE Transactions on Wireless Communications, 9(5), 1552–1557.CrossRef
23.
Zurück zum Zitat Wang, X., & Wang, H. (2010). A novel random access mechanism for OFDMA wireless networks. In 2010 IEEE global telecommunications conference GLOBECOM 2010, Miami, FL (pp. 1–5). Wang, X., & Wang, H. (2010). A novel random access mechanism for OFDMA wireless networks. In 2010 IEEE global telecommunications conference GLOBECOM 2010, Miami, FL (pp. 1–5).
24.
Zurück zum Zitat Ferdous, H. S., & Murshed, M. (2010). Enhanced IEEE 802.11 by integrating multiuser dynamic OFDMA. In Wireless telecommunications symposium (WTS), IEEE, 2010 (pp. 1–6). Ferdous, H. S., & Murshed, M. (2010). Enhanced IEEE 802.11 by integrating multiuser dynamic OFDMA. In Wireless telecommunications symposium (WTS), IEEE, 2010 (pp. 1–6).
25.
Zurück zum Zitat Lou, H., Wang, X., Fang, J., Ghosh, M., Zhang, G., & Olesen, R. (2014). Multi-user parallel channel access for high efficiency carrier grade wireless LANs. In 2014 IEEE international conference on communications (ICC), Sydney, NSW (pp. 3868–3870). Lou, H., Wang, X., Fang, J., Ghosh, M., Zhang, G., & Olesen, R. (2014). Multi-user parallel channel access for high efficiency carrier grade wireless LANs. In 2014 IEEE international conference on communications (ICC), Sydney, NSW (pp. 3868–3870).
26.
Zurück zum Zitat Kamoun, M., Mazet, L., & Gault, S. (2009). Efficient backward compatible allocation mechanism for multi-user CSMA/CA schemes. In 2009 first international conference on communications and networking, Hammamet, 2009 (pp. 1–6). Kamoun, M., Mazet, L., & Gault, S. (2009). Efficient backward compatible allocation mechanism for multi-user CSMA/CA schemes. In 2009 first international conference on communications and networking, Hammamet, 2009 (pp. 1–6).
27.
Zurück zum Zitat Mishima, T., Miyamoto, S., Sampei, S., & Jiang, W. (2013). Novel DCF-based multi-user MAC protocol and dynamic resource allocation for OFDMA WLAN systems. In 2013 international conference on computing, networking and communications (ICNC), San Diego, CA, 2013 (pp. 616–620). Mishima, T., Miyamoto, S., Sampei, S., & Jiang, W. (2013). Novel DCF-based multi-user MAC protocol and dynamic resource allocation for OFDMA WLAN systems. In 2013 international conference on computing, networking and communications (ICNC), San Diego, CA, 2013 (pp. 616–620).
28.
Zurück zum Zitat Park, J., & Kim, K. S. (2018). Load-balancing scheme with small-cell cooperation for clustered heterogeneous cellular networks. IEEE Transactions on Vehicular Technology, 67(1), 633–649.CrossRef Park, J., & Kim, K. S. (2018). Load-balancing scheme with small-cell cooperation for clustered heterogeneous cellular networks. IEEE Transactions on Vehicular Technology, 67(1), 633–649.CrossRef
29.
Zurück zum Zitat Ren, M., Zhang, J., Khoukhi, L., et al. (2018). A unified framework of clustering approach in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1401–1414.CrossRef Ren, M., Zhang, J., Khoukhi, L., et al. (2018). A unified framework of clustering approach in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1401–1414.CrossRef
30.
Zurück zum Zitat Cooper, C., Franklin, D., Ros, M., et al. (2017). A comparative survey of VANET clustering techniques. In IEEE communications surveys and tutorials (Vol. 19, No. 1, pp. 657–681). Firstquarter 2017.CrossRef Cooper, C., Franklin, D., Ros, M., et al. (2017). A comparative survey of VANET clustering techniques. In IEEE communications surveys and tutorials (Vol. 19, No. 1, pp. 657–681). Firstquarter 2017.CrossRef
31.
Zurück zum Zitat Ahmad, M., Hameed, A., Ikram, A. A., et al. (2019). State-of-the-art clustering schemes in mobile ad hoc networks: Objectives, challenges, and future directions. IEEE Access, 7, 17067–17081.CrossRef Ahmad, M., Hameed, A., Ikram, A. A., et al. (2019). State-of-the-art clustering schemes in mobile ad hoc networks: Objectives, challenges, and future directions. IEEE Access, 7, 17067–17081.CrossRef
32.
Zurück zum Zitat Chen, H., Chuang, C., Wang, Y., et al. (2016). Design and implementation of a Cluster-based channel assignment in high density 802.11 WLANs. In 2016 18th Asia-pacific network operations and management symposium (APNOMS).Kanazawa, 2016 (pp. 1–5). Chen, H., Chuang, C., Wang, Y., et al. (2016). Design and implementation of a Cluster-based channel assignment in high density 802.11 WLANs. In 2016 18th Asia-pacific network operations and management symposium (APNOMS).Kanazawa, 2016 (pp. 1–5).
33.
Zurück zum Zitat Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.CrossRef Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.CrossRef
34.
Zurück zum Zitat Lin, W., et al. (2016). Integrated link-system level simulation platform for the next generation WLAN—IEEE 802.11ax. In 2016 IEEE global communications conference (GLOBECOM), Washington, DC, 2016 (pp. 1–7). Lin, W., et al. (2016). Integrated link-system level simulation platform for the next generation WLAN—IEEE 802.11ax. In 2016 IEEE global communications conference (GLOBECOM), Washington, DC, 2016 (pp. 1–7).
Metadaten
Titel
A spatial clustering group division-based OFDMA access protocol for the next generation WLAN
verfasst von
Yong Li
Bo Li
Mao Yang
Zhongjiang Yan
Publikationsdatum
22.08.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 8/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02115-2

Weitere Artikel der Ausgabe 8/2019

Wireless Networks 8/2019 Zur Ausgabe

Neuer Inhalt