Skip to main content

16.11.2023 | Original Paper

A special scalar multiplication algorithm on Jacobi quartic curves

verfasst von: Jiang Weng, Aiwang Chen, Tao Huang, Weifeng Ji

Erschienen in: Applicable Algebra in Engineering, Communication and Computing

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

At present, GLV/GLS scalar multiplication mainly focuses on elliptic curves in Weierstrass form, attempting to find and construct more and more efficiently computable endomorphism. In this paper, we investigate the application of the GLV/GLS scalar multiplication technique to Jacobi Quartic curves. Firstly, we present a concrete construction of efficiently computable endomorphisms for this type of curves over prime fields by exploiting birational equivalence between curves, and obtain a 2-dimensional GLV method. Secondly, we consider the quadratic twists of elliptic curves. By using birational equivalence and Frobenius mapping between curves, we present methods to construct efficiently computable endomorphisms for this type of curves over the quadratic extension field, and obtain a 2-dimensional GLS method. Finally, we obtain a 4-dimensional GLV method on elliptic curves with j-invariant 0 or 1728 by using higher degree twists. The experimental results show that the speedups of the 2-dimensional GLV method and 4-dimensional GLV method compared to 5-NAF method exceed \(37.2\%\) and \(109.4\%\) for Jacobi Quartic curves, respectively. At the same time, when utilizing one of the proposed methods, the scalar multiplication on Jacobi Quartic curves is consistently more efficient than on elliptic curves in Weierstrass form.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Miller, V.: Use of elliptic curves in cryptography. In: Williams, H. (ed.) Proc. CRYPTO 1985, pp. 417–426. LNCS, Springer, Heidelberg (1986) Miller, V.: Use of elliptic curves in cryptography. In: Williams, H. (ed.) Proc. CRYPTO 1985, pp. 417–426. LNCS, Springer, Heidelberg (1986)
3.
Zurück zum Zitat Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Annual International Cryptology Conference, pp. 190–200. Springer, Berlin (2001) Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Annual International Cryptology Conference, pp. 190–200. Springer, Berlin (2001)
4.
Zurück zum Zitat Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 518–535. Springer, Berlin (2009) Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 518–535. Springer, Berlin (2009)
5.
7.
Zurück zum Zitat Farashahi, R.R., Joye, M.: Efficient arithmetic on Hessian curves. In: International Workshop on Public Key Cryptography, pp. 243–260. Springer, Berlin (2010) Farashahi, R.R., Joye, M.: Efficient arithmetic on Hessian curves. In: International Workshop on Public Key Cryptography, pp. 243–260. Springer, Berlin (2010)
8.
Zurück zum Zitat Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. LNCS, vol. 2643, pp. 34–42. Springer (2003) Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. LNCS, vol. 2643, pp. 34–42. Springer (2003)
9.
Zurück zum Zitat Bauer, A., Jaulmes, E., Prouff, E., Reinhard, J.R., Wild, J.: Horizontal collision correlation attack on elliptic curves extended version. Cryptogr. Commun. 7(1), 91–119 (2015) MathSciNetCrossRefMATH Bauer, A., Jaulmes, E., Prouff, E., Reinhard, J.R., Wild, J.: Horizontal collision correlation attack on elliptic curves extended version. Cryptogr. Commun. 7(1), 91–119 (2015) MathSciNetCrossRefMATH
10.
Zurück zum Zitat Feix, B., Roussellet, M., Venelli, A.: Side-channel analysis on blinded regular scalar multiplications. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 3–20. Springer, Heidelberg (2014) CrossRef Feix, B., Roussellet, M., Venelli, A.: Side-channel analysis on blinded regular scalar multiplications. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 3–20. Springer, Heidelberg (2014) CrossRef
11.
Zurück zum Zitat Danger, J. L., Guilley, S., Hoogvorst, P., Murdica, C., Naccache, D.: Improving the big Mac attack on elliptic curve cryptography. Cryptology ePrint Archive, Report 2015/819 (2015). http://​eprint.​iacr.​org/​ Danger, J. L., Guilley, S., Hoogvorst, P., Murdica, C., Naccache, D.: Improving the big Mac attack on elliptic curve cryptography. Cryptology ePrint Archive, Report 2015/819 (2015). http://​eprint.​iacr.​org/​
12.
Zurück zum Zitat Zhou, Z., Hu, Z., Xu, M., Song, W.: Efficient 3-dimensional GLV method for faster point multiplication on some GLS elliptic curves. Inf. Process. Lett. 77(262), 1075–1104 (2010) MathSciNetMATH Zhou, Z., Hu, Z., Xu, M., Song, W.: Efficient 3-dimensional GLV method for faster point multiplication on some GLS elliptic curves. Inf. Process. Lett. 77(262), 1075–1104 (2010) MathSciNetMATH
14.
Zurück zum Zitat Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 106, 2nd edn. Springer, Berlin (2009) CrossRef Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 106, 2nd edn. Springer, Berlin (2009) CrossRef
15.
Zurück zum Zitat Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Berlin (2004) MATH Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Berlin (2004) MATH
16.
Zurück zum Zitat Washington, L.C.: Elliptic Curves: Number Theory and Cryptography. CRC Press, New York (2008) CrossRefMATH Washington, L.C.: Elliptic Curves: Number Theory and Cryptography. CRC Press, New York (2008) CrossRefMATH
17.
Zurück zum Zitat Iijima, T., Matsuo, K., Chao, J. et al.: Construction of Frobenius maps of twist elliptic curves and its application to elliptic scalar multiplication. In: SCIS 2002, IEICE Japan, 2002, pp. 699–702 Iijima, T., Matsuo, K., Chao, J. et al.: Construction of Frobenius maps of twist elliptic curves and its application to elliptic scalar multiplication. In: SCIS 2002, IEICE Japan, 2002, pp. 699–702
18.
Zurück zum Zitat Dou, Y., Weng, J., Ma, C., Wei, F.: Analysis of GLV/GLS method for elliptic curve scalar multiplication. In: Hung, J., Yen, N., Hui, L. (eds.) Frontier Computing-FC 2017. Lecture Notes in Electrical Engineering, vol. 464, pp. 210–219. Springer, Berlin (2017) Dou, Y., Weng, J., Ma, C., Wei, F.: Analysis of GLV/GLS method for elliptic curve scalar multiplication. In: Hung, J., Yen, N., Hui, L. (eds.) Frontier Computing-FC 2017. Lecture Notes in Electrical Engineering, vol. 464, pp. 210–219. Springer, Berlin (2017)
19.
Zurück zum Zitat Longa, P., Miri, A.: New composite operations and precomputation scheme for elliptic curve cryptosystems over prime fields. In: Cramer, R. (ed.) PKC 2008, LNCS 4939, pp. 229–247. Springer (2008) Longa, P., Miri, A.: New composite operations and precomputation scheme for elliptic curve cryptosystems over prime fields. In: Cramer, R. (ed.) PKC 2008, LNCS 4939, pp. 229–247. Springer (2008)
Metadaten
Titel
A special scalar multiplication algorithm on Jacobi quartic curves
verfasst von
Jiang Weng
Aiwang Chen
Tao Huang
Weifeng Ji
Publikationsdatum
16.11.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-023-00633-3