Skip to main content
Erschienen in: Innovative Infrastructure Solutions 1/2018

01.12.2018 | Review

A state-of-the-art review on seismic SSI studies on building structures

verfasst von: Nishant Sharma, Kaustubh Dasgupta, Arindam Dey

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article aims to provide a concise state-of-the-art review of the seismic soil–structure interaction (SSI) studies related to building structures. Irrespective of the type of structure, other associated studies are also presented that are considered as important and integral in SSI studies. Noted researchers working in the field of SSI expressed different types of views with regard to the adoption and beneficial effects of seismic SSI. However, as evidenced from the literature, it was observed that there exist contradictory opinions about its necessity, benefits, as well as its detrimental response. The inconclusiveness of the reports triggers the necessity to critically study the issues and aspects of seismic SSI and examine the various available codal guidelines in detail. The same has been reported in the present article. Certain relevant studies related to the methodology, various computational procedures and the modelling of the soil domain, that are found integral to any seismic SSI technique, has been presented with a view to develop a basic understanding of the subject. Finally, the seismic SSI studies along with guidelines present in various codes of design practice have been reviewed. Moreover, the gap areas that have not received their due attention in the past SSI studies related to buildings has been highlighted. Overall, this article provides a basic insight into the area of seismic SSI and the studies related to building structures supported on shallow and deep foundations. The article focuses to illuminate the areas that have not received due attention in the earlier studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hadjian AH, Luco JE, Tsai NC (1974) Soil–structure interaction: continuum or finite element? Nucl Eng Des 31(2):151–167 Hadjian AH, Luco JE, Tsai NC (1974) Soil–structure interaction: continuum or finite element? Nucl Eng Des 31(2):151–167
2.
Zurück zum Zitat Kausel E (2010) Early history of soil–structure interaction. Soil Dyn Earthq Eng 30(9):822–832 Kausel E (2010) Early history of soil–structure interaction. Soil Dyn Earthq Eng 30(9):822–832
4.
Zurück zum Zitat Roesset JM (2013) Soil structure interaction the early stages. J Appl Sci Eng 16(1):1–8 Roesset JM (2013) Soil structure interaction the early stages. J Appl Sci Eng 16(1):1–8
6.
Zurück zum Zitat BSSC (1997) NEHRP recommended provisions for seismic regulations for new buildings and other structures. Building Seismic Safety Council, Washington, DC BSSC (1997) NEHRP recommended provisions for seismic regulations for new buildings and other structures. Building Seismic Safety Council, Washington, DC
7.
Zurück zum Zitat ASCE 7-05 (2006) Minimum design loads for buildings and other structures (ASCE Standard ASCE/SEI 7-05). American Society of Civil Engineers, Virginia ASCE 7-05 (2006) Minimum design loads for buildings and other structures (ASCE Standard ASCE/SEI 7-05). American Society of Civil Engineers, Virginia
8.
Zurück zum Zitat Mylonakis G, Gazetas G (2000) Seismic soil–structure interaction: beneficial or detrimental? J Earthq Eng 4(03):277–301 Mylonakis G, Gazetas G (2000) Seismic soil–structure interaction: beneficial or detrimental? J Earthq Eng 4(03):277–301
9.
Zurück zum Zitat Yegian MK, Chang CY, Mullen CL, Mylonakis G (2001) Soil–structure interaction under dynamic loading for both shallow and deep foundations. In: Fourth international conference on recent advances in geotechnical earthquake engineering and soil dynamics and symposium in honor of Professor WD Liam Finn, San Diego, California, USA Yegian MK, Chang CY, Mullen CL, Mylonakis G (2001) Soil–structure interaction under dynamic loading for both shallow and deep foundations. In: Fourth international conference on recent advances in geotechnical earthquake engineering and soil dynamics and symposium in honor of Professor WD Liam Finn, San Diego, California, USA
10.
Zurück zum Zitat Luco J, Trifunac M, Wong H (1988) Isolation of soil–structure interaction effects by full-scale forced vibration tests. Earthq Eng Struct Dyn 16(1):1–21 Luco J, Trifunac M, Wong H (1988) Isolation of soil–structure interaction effects by full-scale forced vibration tests. Earthq Eng Struct Dyn 16(1):1–21
11.
Zurück zum Zitat Yamahara H (1970) Ground motions during earthquakes and the input loss of earthquake power to an excitation of buildings. Soils Found 10(2):145–161 Yamahara H (1970) Ground motions during earthquakes and the input loss of earthquake power to an excitation of buildings. Soils Found 10(2):145–161
12.
Zurück zum Zitat Aldea A, Iiba M, Demetriu S, Kashima T (2007) Evidence of soil–structure interaction from earthquake records at a high-rise building site in bucharest. In: 4th International conference on earthquake engineering, Thessaloniki, Greece Aldea A, Iiba M, Demetriu S, Kashima T (2007) Evidence of soil–structure interaction from earthquake records at a high-rise building site in bucharest. In: 4th International conference on earthquake engineering, Thessaloniki, Greece
13.
Zurück zum Zitat Celebi M, Safak E (1991) Seismic response of Transamerica building. I: data and preliminary analysis. J Struct Eng 117(8):2389–2404 Celebi M, Safak E (1991) Seismic response of Transamerica building. I: data and preliminary analysis. J Struct Eng 117(8):2389–2404
14.
Zurück zum Zitat Muria-Vila D, Taborda R, Zapata-Escobar A (2004) Soil–structure interaction effects in two instrumented tall buildings. In: 13th World conference on earthquake engineering, Vancouver, Canada Muria-Vila D, Taborda R, Zapata-Escobar A (2004) Soil–structure interaction effects in two instrumented tall buildings. In: 13th World conference on earthquake engineering, Vancouver, Canada
15.
Zurück zum Zitat Heidebrecht A, Henderson P, Naumoski N, Pappin J (1990) Seismic response and design for structures located on soft clay sites. Can Geotech J 27(3):330–341 Heidebrecht A, Henderson P, Naumoski N, Pappin J (1990) Seismic response and design for structures located on soft clay sites. Can Geotech J 27(3):330–341
16.
Zurück zum Zitat Meli R, Faccioli E, Murià-Vila D, Quaas R, Paolucci R (1998) A study of site effects and seismic response of an instrumented building in Mexico City. J Earthq Eng 2(01):89–111 Meli R, Faccioli E, Murià-Vila D, Quaas R, Paolucci R (1998) A study of site effects and seismic response of an instrumented building in Mexico City. J Earthq Eng 2(01):89–111
17.
Zurück zum Zitat Guéguen P, Bard P-Y (2005) Soil–structure and soil–structure–soil interaction: experimental evidence at the Volvi test site. J Earthq Eng 9(05):657–693 Guéguen P, Bard P-Y (2005) Soil–structure and soil–structure–soil interaction: experimental evidence at the Volvi test site. J Earthq Eng 9(05):657–693
18.
Zurück zum Zitat Guéguen P, Bard P-Y, Chávez-Garc’ia FJ (2002) Site-city seismic interaction in Mexico city-like environments: an analytical study. Bull Seismol Soc Am 92(2):794–811 Guéguen P, Bard P-Y, Chávez-Garc’ia FJ (2002) Site-city seismic interaction in Mexico city-like environments: an analytical study. Bull Seismol Soc Am 92(2):794–811
19.
Zurück zum Zitat Cook RD, Malkus DS, Plesha ME, Witt RJ (1989) Concepts and applications of finite element analysis. Wiley, New York Cook RD, Malkus DS, Plesha ME, Witt RJ (1989) Concepts and applications of finite element analysis. Wiley, New York
20.
Zurück zum Zitat Stevens DJ, Krauthammer T (1988) A finite difference/finite element approach to dynamic soil–structure interaction modelling. Comput Struct 29(2):199–205 Stevens DJ, Krauthammer T (1988) A finite difference/finite element approach to dynamic soil–structure interaction modelling. Comput Struct 29(2):199–205
21.
Zurück zum Zitat Godbole P, Viladkar M, Noorzaei J (1990) Nonlinear soil–structure interaction analysis using coupled finite–infinite elements. Comput Struct 36(6):1089–1096 Godbole P, Viladkar M, Noorzaei J (1990) Nonlinear soil–structure interaction analysis using coupled finite–infinite elements. Comput Struct 36(6):1089–1096
22.
Zurück zum Zitat Wolf JP, Darbre GR (1984) Dynamic stiffness matrix of soil by the boundary-element method: conceptual aspects. Earthq Eng Struct Dyn 12(3):385–400 Wolf JP, Darbre GR (1984) Dynamic stiffness matrix of soil by the boundary-element method: conceptual aspects. Earthq Eng Struct Dyn 12(3):385–400
24.
Zurück zum Zitat Alyagshi Eilouch MN, Sandhu RS (1986) A mixed method for transient analysis of soil–structure interaction under SH-motion. Earthq Eng Struct Dyn 14(4):499–516 Alyagshi Eilouch MN, Sandhu RS (1986) A mixed method for transient analysis of soil–structure interaction under SH-motion. Earthq Eng Struct Dyn 14(4):499–516
25.
Zurück zum Zitat Capuani D, Klein R, Antes H, Tralli A (1995) Dynamic soil–structure interaction of coupled shear walls by boundary element method. Earthq Eng Struct Dyn 24(6):861–879 Capuani D, Klein R, Antes H, Tralli A (1995) Dynamic soil–structure interaction of coupled shear walls by boundary element method. Earthq Eng Struct Dyn 24(6):861–879
27.
Zurück zum Zitat Wang S (1992) Coupled boundary and finite elements for dynamic structure (3D)–foundation–soil interaction. Comput Struct 44(4):807–812 Wang S (1992) Coupled boundary and finite elements for dynamic structure (3D)–foundation–soil interaction. Comput Struct 44(4):807–812
29.
Zurück zum Zitat Wolf JP (2003) The scaled boundary finite element method. Wiley, New York Wolf JP (2003) The scaled boundary finite element method. Wiley, New York
30.
Zurück zum Zitat Wegner J, Yao M, Zhang X (2005) Dynamic wave–soil–structure interaction analysis in the time domain. Comput Struct 83(27):2206–2214 Wegner J, Yao M, Zhang X (2005) Dynamic wave–soil–structure interaction analysis in the time domain. Comput Struct 83(27):2206–2214
32.
Zurück zum Zitat Zdravkovic L, Kontoe S (2008) Some issues in modelling boundary conditions in dynamic geotechnical analysis. In: 12th international conference of international association for computer methods and advances in geomechanics, India, pp 1–6 Zdravkovic L, Kontoe S (2008) Some issues in modelling boundary conditions in dynamic geotechnical analysis. In: 12th international conference of international association for computer methods and advances in geomechanics, India, pp 1–6
33.
Zurück zum Zitat Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, New York Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, New York
34.
Zurück zum Zitat Datta TK (2010) Seismic analysis of structures. Wiley, New Jersey Datta TK (2010) Seismic analysis of structures. Wiley, New Jersey
35.
Zurück zum Zitat Gazetas G (1991) Formulas and charts for impedances of surface and embedded foundations. J Geotech Eng 117(9):1363–1381 Gazetas G (1991) Formulas and charts for impedances of surface and embedded foundations. J Geotech Eng 117(9):1363–1381
36.
Zurück zum Zitat Dutta SC, Roy R (2002) A critical review on idealization and modeling for interaction among soil–foundation–structure system. Comput Struct 80(20):1579–1594 Dutta SC, Roy R (2002) A critical review on idealization and modeling for interaction among soil–foundation–structure system. Comput Struct 80(20):1579–1594
39.
Zurück zum Zitat Raychowdhury P, Singh P (2012) Effect of non-linear soil–structure interaction on seismic response of low-rise SMRF buildings. Earthq Eng Eng Vib 11(4):541–551 Raychowdhury P, Singh P (2012) Effect of non-linear soil–structure interaction on seismic response of low-rise SMRF buildings. Earthq Eng Eng Vib 11(4):541–551
42.
Zurück zum Zitat Kausel E, Roesset JM, Wass G (1975) Dynamic analysis of footings on layered media. J Eng Mech Div 101:679–693 Kausel E, Roesset JM, Wass G (1975) Dynamic analysis of footings on layered media. J Eng Mech Div 101:679–693
43.
Zurück zum Zitat Lysmer J, Waas G (1972) Shear waves in plane infinite structures. Journal of Engineering Mechanics Lysmer J, Waas G (1972) Shear waves in plane infinite structures. Journal of Engineering Mechanics
44.
Zurück zum Zitat Roesset JM, Ettouney MM (1977) Transmitting boundaries: a comparison. Int J Numer Anal Methods Geomech 1(2):151–176 Roesset JM, Ettouney MM (1977) Transmitting boundaries: a comparison. Int J Numer Anal Methods Geomech 1(2):151–176
45.
Zurück zum Zitat Wolf JP, Somaini DR (1986) Approximate dynamic model of embedded foundation in time domain. Earthq Eng Struct Dyn 14(5):683–703 Wolf JP, Somaini DR (1986) Approximate dynamic model of embedded foundation in time domain. Earthq Eng Struct Dyn 14(5):683–703
46.
Zurück zum Zitat Kausel E (1988) Local transmitting boundaries. J Eng Mech 114(6):1011–1027 Kausel E (1988) Local transmitting boundaries. J Eng Mech 114(6):1011–1027
47.
Zurück zum Zitat Chen ATF (1985) Transmitting boundaries and seismic response. J Geotech Eng 111(2):174–180 Chen ATF (1985) Transmitting boundaries and seismic response. J Geotech Eng 111(2):174–180
48.
Zurück zum Zitat Jingbo L, Yandong L (1998) A direct method for analysis of dynamic soil–structure interaction based on interface idea. Dev Geotech Eng 83:261–276 Jingbo L, Yandong L (1998) A direct method for analysis of dynamic soil–structure interaction based on interface idea. Dev Geotech Eng 83:261–276
49.
Zurück zum Zitat Gentela SR (2011) Influence of soil–structure interaction on seismic behaviour of reinforced concrete integral bridge piers. M. Tech thesis. Indian Institute of Technology Guwahati Gentela SR (2011) Influence of soil–structure interaction on seismic behaviour of reinforced concrete integral bridge piers. M. Tech thesis. Indian Institute of Technology Guwahati
51.
Zurück zum Zitat Kuhlemeyer RL, Lysmer J (1973) Finite element method accuracy for wave propagation problems. J Soil Mech Found Div 99:421–427 (Tech Rpt) Kuhlemeyer RL, Lysmer J (1973) Finite element method accuracy for wave propagation problems. J Soil Mech Found Div 99:421–427 (Tech Rpt)
52.
Zurück zum Zitat Häggblad B, Nordgren G (1987) Modelling nonlinear soil–structure interaction using interface elements, elastic–plastic soil elements and absorbing infinite elements. Comput Struct 26(1–2):307–324 Häggblad B, Nordgren G (1987) Modelling nonlinear soil–structure interaction using interface elements, elastic–plastic soil elements and absorbing infinite elements. Comput Struct 26(1–2):307–324
53.
Zurück zum Zitat Yun CB, Kim DK, Kim JM (2000) Analytical frequency-dependent infinite elements for soil–structure interaction analysis in two-dimensional medium. Eng Struct 22(3):258–271 Yun CB, Kim DK, Kim JM (2000) Analytical frequency-dependent infinite elements for soil–structure interaction analysis in two-dimensional medium. Eng Struct 22(3):258–271
54.
Zurück zum Zitat Smith WD (1974) A nonreflecting plane boundary for wave propagation problems. J Comput Phys 15(4):492–503 Smith WD (1974) A nonreflecting plane boundary for wave propagation problems. J Comput Phys 15(4):492–503
55.
Zurück zum Zitat Cundall PA, Kunar RR, Carpenter PC, Marti J (1978) Solution of infinite dynamic problems by finite modelling in the time domain. In: Second international conference on applied numerical modelling. Madrid Polytechnic University, Spain, pp 339–351 Cundall PA, Kunar RR, Carpenter PC, Marti J (1978) Solution of infinite dynamic problems by finite modelling in the time domain. In: Second international conference on applied numerical modelling. Madrid Polytechnic University, Spain, pp 339–351
56.
Zurück zum Zitat Kunar R, Rodriguez-Ovejero L (1980) A model with non-reflecting boundaries for use in explicit soil–structure interaction analyses. Earthq Eng Struct Dyn 8(4):361–374 Kunar R, Rodriguez-Ovejero L (1980) A model with non-reflecting boundaries for use in explicit soil–structure interaction analyses. Earthq Eng Struct Dyn 8(4):361–374
57.
Zurück zum Zitat Deeks AJ, Randolph MF (1994) Axisymmetric time-domain transmitting boundaries. J Eng Mech 120(1):25–42 Deeks AJ, Randolph MF (1994) Axisymmetric time-domain transmitting boundaries. J Eng Mech 120(1):25–42
58.
Zurück zum Zitat Nakamura N (2009) Nonlinear response analyses of a soil–structure interaction system using transformed energy transmitting boundary in the time domain. Soil Dyn Earthq Eng 29(5):799–808 Nakamura N (2009) Nonlinear response analyses of a soil–structure interaction system using transformed energy transmitting boundary in the time domain. Soil Dyn Earthq Eng 29(5):799–808
59.
Zurück zum Zitat Meek J, Veletsos A (1974) Simple models for foundations in lateral and rocking motion. In: 5th World conference on earthquake engineering, Rome, Italy, pp 2610–2631 Meek J, Veletsos A (1974) Simple models for foundations in lateral and rocking motion. In: 5th World conference on earthquake engineering, Rome, Italy, pp 2610–2631
60.
Zurück zum Zitat Nagendra M, Sridharan A (1984) Footing response to horizontal vibration. J Eng Mech 110(4):648–654 Nagendra M, Sridharan A (1984) Footing response to horizontal vibration. J Eng Mech 110(4):648–654
61.
Zurück zum Zitat Dobry R, Gazetas G (1986) Dynamic response of arbitrarily shaped foundations. J Geotech Eng 112(2):109–135 Dobry R, Gazetas G (1986) Dynamic response of arbitrarily shaped foundations. J Geotech Eng 112(2):109–135
62.
Zurück zum Zitat Gazetas G (1983) Analysis of machine foundation vibrations: state of the art. Int J Soil Dyn Earthq Eng 2(1):2–42 Gazetas G (1983) Analysis of machine foundation vibrations: state of the art. Int J Soil Dyn Earthq Eng 2(1):2–42
63.
Zurück zum Zitat Chatterjee P, Basu B (2008) Some analytical results on lateral dynamic stiffness for footings supported on hysteretic soil medium. Soil Dyn Earthq Eng 28(1):36–43 Chatterjee P, Basu B (2008) Some analytical results on lateral dynamic stiffness for footings supported on hysteretic soil medium. Soil Dyn Earthq Eng 28(1):36–43
64.
Zurück zum Zitat Weissman K, Prevost JH (1991) Results and analysis of soil–structure interaction experiments performed in the centrifuge. Earthq Eng & Struct Dyn 20(3):259–274 Weissman K, Prevost JH (1991) Results and analysis of soil–structure interaction experiments performed in the centrifuge. Earthq Eng & Struct Dyn 20(3):259–274
65.
Zurück zum Zitat Blaney GW, O’Neill MW (1986) Measured lateral response of mass on single pile in clay. J Geotech Eng 112(4):443–457 Blaney GW, O’Neill MW (1986) Measured lateral response of mass on single pile in clay. J Geotech Eng 112(4):443–457
66.
Zurück zum Zitat Randolph MF (1981) The response of flexible piles to lateral loading. Geotechnique 31(2):247–259 Randolph MF (1981) The response of flexible piles to lateral loading. Geotechnique 31(2):247–259
67.
Zurück zum Zitat Krishnan R, Gazetas G, Velez A (1983) Static and dynamic lateral deflexion of piles in non-homogeneous soil stratum. Geotechnique 33(3):307–325 Krishnan R, Gazetas G, Velez A (1983) Static and dynamic lateral deflexion of piles in non-homogeneous soil stratum. Geotechnique 33(3):307–325
68.
Zurück zum Zitat Gazetas G (1984) Seismic response of end-bearing single piles. Int J Soil Dyn Earthq Eng 3(2):82–93 Gazetas G (1984) Seismic response of end-bearing single piles. Int J Soil Dyn Earthq Eng 3(2):82–93
69.
Zurück zum Zitat Gazetas G, Dobry R (1984) Horizontal response of piles in layered soils. J Geotech Eng 110(1):20–40 Gazetas G, Dobry R (1984) Horizontal response of piles in layered soils. J Geotech Eng 110(1):20–40
70.
Zurück zum Zitat Dezi F, Carbonari S, Leoni G (2009) A model for the 3D kinematic interaction analysis of pile groups in layered soils. Earthq Eng Struct Dyn 38(11):1281–1305 Dezi F, Carbonari S, Leoni G (2009) A model for the 3D kinematic interaction analysis of pile groups in layered soils. Earthq Eng Struct Dyn 38(11):1281–1305
71.
Zurück zum Zitat Kavvads M, Gazetas G (1993) Kinematic seismic response and bending of free-head piles in layered soil. Geotechnique 43(2):207–222 Kavvads M, Gazetas G (1993) Kinematic seismic response and bending of free-head piles in layered soil. Geotechnique 43(2):207–222
72.
Zurück zum Zitat Gazetas G, Dobry R (1984) Simple radiation damping model for piles and footings. J Eng Mech 110(6):937–956 Gazetas G, Dobry R (1984) Simple radiation damping model for piles and footings. J Eng Mech 110(6):937–956
73.
Zurück zum Zitat Mylonakis G, Nikolaou A, Gazetas G (1997) Soil–pile-bridge seismic interaction: kinematic and inertial effects. Part I: soft soil. Earthq Eng Struct Dyn 26(3):337–359 Mylonakis G, Nikolaou A, Gazetas G (1997) Soil–pile-bridge seismic interaction: kinematic and inertial effects. Part I: soft soil. Earthq Eng Struct Dyn 26(3):337–359
74.
Zurück zum Zitat Berger E, Mahi SA, Pyke R (1977) Simplified method for evaluating soil–pile–structure interaction effects. In: 9th Annual offshore technology conference, Houston, Texas, pp 589–598 Berger E, Mahi SA, Pyke R (1977) Simplified method for evaluating soil–pile–structure interaction effects. In: 9th Annual offshore technology conference, Houston, Texas, pp 589–598
75.
Zurück zum Zitat Dobry R, Gazetas G (1988) Simple method for dynamic stiffness and damping of floating pile groups. Geotechnique 38(4):557–574 Dobry R, Gazetas G (1988) Simple method for dynamic stiffness and damping of floating pile groups. Geotechnique 38(4):557–574
77.
Zurück zum Zitat Poulos HG, Davis EH (1990) Pile foundation analysis and design. Krieger Publication, Malabar Poulos HG, Davis EH (1990) Pile foundation analysis and design. Krieger Publication, Malabar
78.
Zurück zum Zitat Boulanger RW, Curras CJ, Kutter BL, Wilson DW, Abghari A (1999) Seismic soil–pile–structure interaction experiments and analyses. J Geotech Geoenviron Eng 125(9):750–759 Boulanger RW, Curras CJ, Kutter BL, Wilson DW, Abghari A (1999) Seismic soil–pile–structure interaction experiments and analyses. J Geotech Geoenviron Eng 125(9):750–759
79.
Zurück zum Zitat Nogami T, Otani J, Konagai K, Chen HL (1992) Nonlinear soil–pile interaction model for dynamic lateral motion. J Geotech Eng 118(1):89–106 Nogami T, Otani J, Konagai K, Chen HL (1992) Nonlinear soil–pile interaction model for dynamic lateral motion. J Geotech Eng 118(1):89–106
80.
Zurück zum Zitat Novak M, Sheta M (1980) Approximate approach to contact effects of piles. In: Dynamic response of pile foundations: analytical aspects, National Convention, ASCE. Geotechnical Engineering Division, Florida, USA, pp 53–79 Novak M, Sheta M (1980) Approximate approach to contact effects of piles. In: Dynamic response of pile foundations: analytical aspects, National Convention, ASCE. Geotechnical Engineering Division, Florida, USA, pp 53–79
81.
Zurück zum Zitat Wang S, Kutter BL, Chacko MJ, Wilson DW, Boulanger RW, Abghari A (1998) Nonlinear seismic soil–pile structure interaction. Earthq Spectra 14(2):377–396 Wang S, Kutter BL, Chacko MJ, Wilson DW, Boulanger RW, Abghari A (1998) Nonlinear seismic soil–pile structure interaction. Earthq Spectra 14(2):377–396
82.
Zurück zum Zitat Hokmabadi AS, Fatahi B, Samali B (2014) Assessment of soil–pile–structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations. Comput Geotech 55:172–186 Hokmabadi AS, Fatahi B, Samali B (2014) Assessment of soil–pile–structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations. Comput Geotech 55:172–186
83.
Zurück zum Zitat Bhattacharya K, Dutta SC (2004) Assessing lateral period of building frames incorporating soil-flexibility. J Sound Vib 269(3):795–821 Bhattacharya K, Dutta SC (2004) Assessing lateral period of building frames incorporating soil-flexibility. J Sound Vib 269(3):795–821
84.
Zurück zum Zitat Balkaya C, Yuksel SB, Derinoz O (2012) Soil–structure interaction effects on the fundamental periods of the shear-wall dominant buildings. Struct Des Tall Spec Build 21(6):416–430 Balkaya C, Yuksel SB, Derinoz O (2012) Soil–structure interaction effects on the fundamental periods of the shear-wall dominant buildings. Struct Des Tall Spec Build 21(6):416–430
85.
Zurück zum Zitat Nateghi-A F, Rezaei-Tabrizi A (2013) Nonlinear dynamic response of tall buildings considering structure–soil–structure effects. Struct Des Tall Spec Build 22(14):1075–1082 Nateghi-A F, Rezaei-Tabrizi A (2013) Nonlinear dynamic response of tall buildings considering structure–soil–structure effects. Struct Des Tall Spec Build 22(14):1075–1082
87.
Zurück zum Zitat Veletsos AS, Meek JW (1974) Dynamic behaviour of building-foundation systems. Earthq Eng Struct Dyn 3(2):121–138 Veletsos AS, Meek JW (1974) Dynamic behaviour of building-foundation systems. Earthq Eng Struct Dyn 3(2):121–138
88.
Zurück zum Zitat Bielak J (1978) Dynamic response of non-linear building-foundation systems. Earthq Eng Struct Dyn 6(1):17–30 Bielak J (1978) Dynamic response of non-linear building-foundation systems. Earthq Eng Struct Dyn 6(1):17–30
90.
Zurück zum Zitat Sáez E, Lopez-Caballero F, Modaressi-Farahmand-Razavi A (2013) Inelastic dynamic soil–structure interaction effects on moment-resisting frame buildings. Eng Struct 51:166–177 Sáez E, Lopez-Caballero F, Modaressi-Farahmand-Razavi A (2013) Inelastic dynamic soil–structure interaction effects on moment-resisting frame buildings. Eng Struct 51:166–177
91.
Zurück zum Zitat Kraus I, Džakić D (2013) Soil–structure interaction effects on seismic behaviour of reinforced concrete frames. In: Skopje earthquake—50 Years European Earthquake Engineering, Skopje, Macedonia Kraus I, Džakić D (2013) Soil–structure interaction effects on seismic behaviour of reinforced concrete frames. In: Skopje earthquake—50 Years European Earthquake Engineering, Skopje, Macedonia
92.
Zurück zum Zitat Dutta SC, Bhattacharya K, Roy R (2004) Response of low-rise buildings under seismic ground excitation incorporating soil–structure interaction. Soil Dyn Earthq Eng 24(12):893–914 Dutta SC, Bhattacharya K, Roy R (2004) Response of low-rise buildings under seismic ground excitation incorporating soil–structure interaction. Soil Dyn Earthq Eng 24(12):893–914
93.
Zurück zum Zitat Halabian A, El Naggar M, Vickery B (2002) Nonlinear seismic response of reinforced-concrete free-standing towers with application to TV towers on flexible foundations. Struct Des Tall Build 11(1):51–72 Halabian A, El Naggar M, Vickery B (2002) Nonlinear seismic response of reinforced-concrete free-standing towers with application to TV towers on flexible foundations. Struct Des Tall Build 11(1):51–72
95.
Zurück zum Zitat Oliveto G, Santini A (1993) A simplified model for the dynamic soil–structure interaction of planar frame-wall systems. Eng Struct 15(6):431–438 Oliveto G, Santini A (1993) A simplified model for the dynamic soil–structure interaction of planar frame-wall systems. Eng Struct 15(6):431–438
96.
Zurück zum Zitat Nadjai A, Johnson D (1996) Elastic analysis of spatial shear wall systems with flexible bases. Struct Des Tall Build 5(1):55–72 Nadjai A, Johnson D (1996) Elastic analysis of spatial shear wall systems with flexible bases. Struct Des Tall Build 5(1):55–72
97.
Zurück zum Zitat Carbonari S, Dezi F, Leoni G (2011) Linear soil–structure interaction of coupled wall–frame structures on pile foundations. Soil Dyn Earthq Eng 31(9):1296–1309 Carbonari S, Dezi F, Leoni G (2011) Linear soil–structure interaction of coupled wall–frame structures on pile foundations. Soil Dyn Earthq Eng 31(9):1296–1309
98.
Zurück zum Zitat Carbonari S, Dezi F, Leoni G (2012) Nonlinear seismic behaviour of wall–frame dual systems accounting for soil–structure interaction. Earthq Eng Struct Dyn 41(12):1651–1672 Carbonari S, Dezi F, Leoni G (2012) Nonlinear seismic behaviour of wall–frame dual systems accounting for soil–structure interaction. Earthq Eng Struct Dyn 41(12):1651–1672
99.
Zurück zum Zitat Kutanis M, Elmas M (2001) Non-linear seismic soil–structure interaction analysis based on the substructure method in the time domain. Turk J Eng Environ Sci 25(6):617–626 Kutanis M, Elmas M (2001) Non-linear seismic soil–structure interaction analysis based on the substructure method in the time domain. Turk J Eng Environ Sci 25(6):617–626
100.
Zurück zum Zitat Lu X, Chen B, Li P, Chen Y (2003) Numerical analysis of tall buildings considering dynamic soil–structure interaction. J Asian Archit Build Eng 2(1):1–8 Lu X, Chen B, Li P, Chen Y (2003) Numerical analysis of tall buildings considering dynamic soil–structure interaction. J Asian Archit Build Eng 2(1):1–8
101.
Zurück zum Zitat Matinmanesh H, Asheghabadi MS (2011) Seismic analysis on soil–structure interaction of buildings over sandy soil. Procedia Eng 14:1737–1743 Matinmanesh H, Asheghabadi MS (2011) Seismic analysis on soil–structure interaction of buildings over sandy soil. Procedia Eng 14:1737–1743
103.
Zurück zum Zitat Eurocode 8 (2004) Design of structures for earthquake resistance part 1: general rules, seismic actions and rules for buildings (EN 1998-1: 2004). European Committee for Normalization (CEN), Belgium Eurocode 8 (2004) Design of structures for earthquake resistance part 1: general rules, seismic actions and rules for buildings (EN 1998-1: 2004). European Committee for Normalization (CEN), Belgium
104.
Zurück zum Zitat JSCE (2007) Guidelines for concrete no. 15: standard specifications for concrete structures. Japan Society of Civil Engineers JSCE, Tokyo JSCE (2007) Guidelines for concrete no. 15: standard specifications for concrete structures. Japan Society of Civil Engineers JSCE, Tokyo
105.
Zurück zum Zitat IS 1893 (2002) Indian Standard Criteria for earthquake resistant design of structures, part 1: general provisions and buildings. Bureau of Indian Standards BIS, New Delhi IS 1893 (2002) Indian Standard Criteria for earthquake resistant design of structures, part 1: general provisions and buildings. Bureau of Indian Standards BIS, New Delhi
106.
Zurück zum Zitat del Distrito Federal G (2004) Normas técnicas complementarias para diseño por sismo. Gaceta Oficial del Gobierno del DF 2:55–77 del Distrito Federal G (2004) Normas técnicas complementarias para diseño por sismo. Gaceta Oficial del Gobierno del DF 2:55–77
107.
Zurück zum Zitat FEMA 450 (2003) NEHRP recommended provisions for seismic regulations for new buildings and other structures part 1: provisions. Building Seismic Saftey Council BSSC, Washington, DC FEMA 450 (2003) NEHRP recommended provisions for seismic regulations for new buildings and other structures part 1: provisions. Building Seismic Saftey Council BSSC, Washington, DC
108.
Zurück zum Zitat FEMA 440 (2005) Improvement of nonlinear static seismic analysis procedures. Applied Technical Council, Redwood City FEMA 440 (2005) Improvement of nonlinear static seismic analysis procedures. Applied Technical Council, Redwood City
109.
Zurück zum Zitat FEMA 356 (2000) Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington, DC FEMA 356 (2000) Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington, DC
110.
Zurück zum Zitat ATC 40 (1996) Seismic evaluation and retrofit of concrete buildings (report no. ATC-40). Applied Technology Council, Redwood City, California, USA ATC 40 (1996) Seismic evaluation and retrofit of concrete buildings (report no. ATC-40). Applied Technology Council, Redwood City, California, USA
Metadaten
Titel
A state-of-the-art review on seismic SSI studies on building structures
verfasst von
Nishant Sharma
Kaustubh Dasgupta
Arindam Dey
Publikationsdatum
01.12.2018
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 1/2018
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-017-0118-z

Weitere Artikel der Ausgabe 1/2018

Innovative Infrastructure Solutions 1/2018 Zur Ausgabe