Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

09.03.2016 | Theoretical Advances | Ausgabe 3/2017

Pattern Analysis and Applications 3/2017

A stochastic framework for K-SVD with applications on face recognition

Zeitschrift:
Pattern Analysis and Applications > Ausgabe 3/2017
Autoren:
Gustavo Malkomes, Carlos Eduardo Fisch de Brito, João Paulo Pordeus Gomes

Abstract

In recent years, the sparse representation modeling of signals has received a lot of attention due to its state-of-the-art performance in different computer vision tasks. One important factor to its success is the ability to promote representations that are well adapted to the data. This is achieved by the use of dictionary learning algorithms. The most well known of these algorithms is K-SVD. In this paper, we propose a stochastic framework for K-SVD called \(\alpha\)K-SVD. The \(\alpha\)K-SVD uses a parameter \(\alpha\) to control a compromise between exploring the space of dictionaries and improving a possible solution. The use of this heuristic search strategy was motivated by the fact that K-SVD uses a greedy search algorithm with fast convergence, possibly leading to local minimum. Our approach is evaluated on two public face recognition databases. The results show that our approach yields better results than K-SVD and LC-KSVD (a K-SVD adaptation to classification) when the sparsity level is low.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2017

Pattern Analysis and Applications 3/2017 Zur Ausgabe

Premium Partner

    Bildnachweise