Skip to main content

2024 | OriginalPaper | Buchkapitel

A Stock Price Trend Prediction Method Based on Market Sentiment Factors and Multi-layer Stacking Ensemble Learning with Dual-CNN-LSTM Models and Nested Heterogeneous Learners

verfasst von : Maoguang Wang, Jiaqi Yan, Yuxiao Chen

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Investor sentiment, as a factor influencing stock price volatility, has received increasing research attention in recent years. This study proposes a more comprehensive representation of sentiment by incorporating social attributes when constructing investor factors. Notably, a novel market sentiment factor, γ, is introduced in this paper, which combines investor sentiment, stock data, and policy influences to enhance prediction accuracy beyond individual models. A multi-level nested ensemble model based on stacking is constructed in this study, which integrates the sentiment-stock Dual-CNN-LSTM model with learners to improve the accuracy of stock price volatility prediction. The experimental results demonstrate that: (1) The proposed market sentiment factor γ shows improved predictive accuracy compared to using investor sentiment factors alone, with an average increase of 5.55%; (2) The Dual-CNN-LSTM model outperforms the CNN-LSTM model using stock data alone in terms of volatility prediction accuracy, with an improvement of 9.81%. (3) The proposed multi-level nested ensemble algorithm, which adopts stacking nested Learner, achieves an accuracy of 88.24% in stock trend prediction. Overall, this research constructs a better sentiment indicator factor γ and provides a new approach for predicting stock price volatility through the integrated nested model, highlighting the effectiveness of hybrid architectures in addressing financial forecasting challenges.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Song, Z., Gong, X., Zhang, C., Yu, C.: Investor sentiment based on scaled PCA method: a powerful predictor of realized volatility in the Chinese stock market. Int. Rev. Econ. Finance 83(C), 528–545 (2023). Elsevier Song, Z., Gong, X., Zhang, C., Yu, C.: Investor sentiment based on scaled PCA method: a powerful predictor of realized volatility in the Chinese stock market. Int. Rev. Econ. Finance 83(C), 528–545 (2023). Elsevier
4.
Zurück zum Zitat Zhang, L., Wu, T., Lahrichi, S., Salas-Flores, C.G., Li, J.: A data science pipeline for algorithmic trading: a comparative study of applications for finance and cryptoeconomics. arXiv preprint arXiv:2206.14932 (2022) Zhang, L., Wu, T., Lahrichi, S., Salas-Flores, C.G., Li, J.: A data science pipeline for algorithmic trading: a comparative study of applications for finance and cryptoeconomics. arXiv preprint arXiv:​2206.​14932 (2022)
5.
Zurück zum Zitat Fang, H., Chung, C.-P., Lu, Y.-C., Lee, Y.-H., Wang, W.-H.: The impacts of investors’ sentiments on stock returns using fintech approaches. Int. Rev. Financ. Anal. 77(C) (2021). Elsevier Fang, H., Chung, C.-P., Lu, Y.-C., Lee, Y.-H., Wang, W.-H.: The impacts of investors’ sentiments on stock returns using fintech approaches. Int. Rev. Financ. Anal. 77(C) (2021). Elsevier
6.
Zurück zum Zitat Tang, Q., Fan, T., Shi, R., Huang, J., Ma, Y.: Prediction of financial time series using LSTM and data denoising methods. arXiv preprint arXiv:2103.03505 (2021) Tang, Q., Fan, T., Shi, R., Huang, J., Ma, Y.: Prediction of financial time series using LSTM and data denoising methods. arXiv preprint arXiv:​2103.​03505 (2021)
9.
Zurück zum Zitat Zhang, C.: Research on the correlation between text emotion mining and stock market based on deep learning. Papers arXiv:2205.06675, arXiv.org (2022) Zhang, C.: Research on the correlation between text emotion mining and stock market based on deep learning. Papers arXiv:​2205.​06675, arXiv.org (2022)
10.
Zurück zum Zitat Al-Nasseri, A., Ali, F.M.: What does investors’ online divergence of opinion tell us about stock returns and trading volume?. J. Bus. Res. 86(1) (2018) Al-Nasseri, A., Ali, F.M.: What does investors’ online divergence of opinion tell us about stock returns and trading volume?. J. Bus. Res. 86(1) (2018)
12.
Zurück zum Zitat Devlin, J., Chang, M.W., Lee, K., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186. Association for Computational Linguistics, Stroudsburg, PA (2019) Devlin, J., Chang, M.W., Lee, K., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186. Association for Computational Linguistics, Stroudsburg, PA (2019)
13.
Zurück zum Zitat Jiao, P., Veiga, A., Walther, A.: Social media, news media, and the stock market. J. Econ. Behav. Organ. 176, 63–90 (2020)CrossRef Jiao, P., Veiga, A., Walther, A.: Social media, news media, and the stock market. J. Econ. Behav. Organ. 176, 63–90 (2020)CrossRef
15.
Zurück zum Zitat Buszko, M., Orzeszko, W., Stawarz, M.: COVID-19 pandemic and stability of stock market - a sectoral approach. PLoS ONE 16(5), 1–26 (2021)CrossRef Buszko, M., Orzeszko, W., Stawarz, M.: COVID-19 pandemic and stability of stock market - a sectoral approach. PLoS ONE 16(5), 1–26 (2021)CrossRef
16.
Zurück zum Zitat Haq, A.U., Zeb, A., Lei, Z., Zhang, D.: Forecasting daily stock trend using multi-filter feature selection and deep learning. Expert Syst. Appl. 168, 114444 (2021)CrossRef Haq, A.U., Zeb, A., Lei, Z., Zhang, D.: Forecasting daily stock trend using multi-filter feature selection and deep learning. Expert Syst. Appl. 168, 114444 (2021)CrossRef
Metadaten
Titel
A Stock Price Trend Prediction Method Based on Market Sentiment Factors and Multi-layer Stacking Ensemble Learning with Dual-CNN-LSTM Models and Nested Heterogeneous Learners
verfasst von
Maoguang Wang
Jiaqi Yan
Yuxiao Chen
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_29