Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Cognitive Computation 6/2020

31.07.2020

A Structural Topic Modeling-Based Bibliometric Study of Sentiment Analysis Literature

verfasst von: Xieling Chen, Haoran Xie

Erschienen in: Cognitive Computation | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Sentiment analysis is an increasingly evolving field of research in computer science. With the considerable number of studies on innovative sentiment analysis available, it is worth the effort to present a review to understand the research on sentiment analysis comprehensively. This study aimed to investigate issues involved in sentiment analysis; for instance, (1) What types of research topics had been covered in sentiment analysis research? (2) How did the research topics evolve with time? (3) What were the topic distributions for major contributors? (4) How did major contributors collaborate in sentiment analysis research? Based on articles retrieved from the Web of Science, this study presented a bibliometric review of sentiment analysis with the basis of a structural topic modeling method to obtain an extensive overview of the research field. We also utilized methods such as regression analysis, geographic visualization, social network analysis, and the Mann–Kendal trend test. Sentiment analysis research had, overall, received a growing interest in academia. In addition, institutions and authors within the same countries/regions were liable to collaborate closely. Highly discussed topics were sentiment lexicons and knowledge bases, aspect-based sentiment analysis, and social network analysis. Several current and potential future directions, such as deep learning for natural language processing, web services, recommender systems and personalization, and education and social issues, were revealed. The findings provided a thorough understanding of the trends and topics regarding sentiment analysis, which could help in efficiently monitoring future research works and projects. Through this study, we proposed a framework for conducting a comprehensive bibliometric analysis.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Tirea M. Traders’ behavior effect on stock price evolution. 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing: IEEE; 2013. p. 273–280. Tirea M. Traders’ behavior effect on stock price evolution. 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing: IEEE; 2013. p. 273–280.
2.
Zurück zum Zitat Ma Y, Peng H, Khan T, Cambria E, Hussain A. Sentic LSTM: a hybrid network for targeted aspect-based sentiment analysis. Cogn Comput. 2018;10(4):639–50. Ma Y, Peng H, Khan T, Cambria E, Hussain A. Sentic LSTM: a hybrid network for targeted aspect-based sentiment analysis. Cogn Comput. 2018;10(4):639–50.
3.
Zurück zum Zitat Agt-Rickauer H, Kutsche R-D, Sack H. Automated recommendation of related model elements for domain models. International conference on model-driven engineering and software development: Springer; 2018. p. 134–58. Agt-Rickauer H, Kutsche R-D, Sack H. Automated recommendation of related model elements for domain models. International conference on model-driven engineering and software development: Springer; 2018. p. 134–58.
4.
Zurück zum Zitat Ravi K, Ravi V. A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowl-Based Syst. 2015;89:14–46. Ravi K, Ravi V. A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowl-Based Syst. 2015;89:14–46.
5.
Zurück zum Zitat Hussein D. A survey on sentiment analysis challenges. J King Saud Univ Eng Sci. 2018;30(4):330–8. Hussein D. A survey on sentiment analysis challenges. J King Saud Univ Eng Sci. 2018;30(4):330–8.
6.
Zurück zum Zitat Liu B. Sentiment analysis and opinion mining. Synth Lect Hum Lang Technol. 2012;5(1):1–167. Liu B. Sentiment analysis and opinion mining. Synth Lect Hum Lang Technol. 2012;5(1):1–167.
7.
Zurück zum Zitat Qazi A, Raj RG, Hardaker G, Standing C. A systematic literature review on opinion types and sentiment analysis techniques. Internet Res. 2017;27(3):608–30. Qazi A, Raj RG, Hardaker G, Standing C. A systematic literature review on opinion types and sentiment analysis techniques. Internet Res. 2017;27(3):608–30.
8.
Zurück zum Zitat Medhat W, Hassan A, Korashy H. Sentiment analysis algorithms and applications: a survey. Ain Shams Eng J. 2014;5(4):1093–113. Medhat W, Hassan A, Korashy H. Sentiment analysis algorithms and applications: a survey. Ain Shams Eng J. 2014;5(4):1093–113.
9.
Zurück zum Zitat Han Z, Wu J, Huang C, Huang Q, Zhao M. A review on sentiment discovery and analysis of educational big-data. Wiley Interdisc Rev Data Min Knowl Disc. 2020;10(1):1–22. Han Z, Wu J, Huang C, Huang Q, Zhao M. A review on sentiment discovery and analysis of educational big-data. Wiley Interdisc Rev Data Min Knowl Disc. 2020;10(1):1–22.
10.
Zurück zum Zitat Poria S, Cambria E, Bajpai R, Hussain A. A review of affective computing: from unimodal analysis to multimodal fusion. Inform Fusion. 2017;37:98–125. Poria S, Cambria E, Bajpai R, Hussain A. A review of affective computing: from unimodal analysis to multimodal fusion. Inform Fusion. 2017;37:98–125.
11.
Zurück zum Zitat Hollenstein N, Rotsztejn J, Troendle M, Pedroni A, Zhang C, Langer N. ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading. Sci Data. 2018;5(1):1–13. Hollenstein N, Rotsztejn J, Troendle M, Pedroni A, Zhang C, Langer N. ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading. Sci Data. 2018;5(1):1–13.
12.
Zurück zum Zitat Mishra A, Kanojia D, Nagar S, Dey K, Bhattacharyya P. Leveraging cognitive features for sentiment analysis. Proceedings of the 20th SIGNLL conference on computational natural language learning; 2016. p. 156 –166. Mishra A, Kanojia D, Nagar S, Dey K, Bhattacharyya P. Leveraging cognitive features for sentiment analysis. Proceedings of the 20th SIGNLL conference on computational natural language learning; 2016. p. 156 –166.
13.
Zurück zum Zitat Liu Q, Wu R, Chen E, Xu G, Su Y, Chen Z, et al. Fuzzy cognitive diagnosis for modelling examinee performance. ACM Trans Intell Syst Technol. 2018;9(4):1–26. Liu Q, Wu R, Chen E, Xu G, Su Y, Chen Z, et al. Fuzzy cognitive diagnosis for modelling examinee performance. ACM Trans Intell Syst Technol. 2018;9(4):1–26.
14.
Zurück zum Zitat Long Y, Xiang R, Lu Q, Huang C-R, Li M. Improving attention model based on cognition grounded data for sentiment analysis. IEEE Trans Affect Comput. 2019:1–14. Long Y, Xiang R, Lu Q, Huang C-R, Li M. Improving attention model based on cognition grounded data for sentiment analysis. IEEE Trans Affect Comput. 2019:1–14.
15.
Zurück zum Zitat Long Y, Lu Q, Xiang R, Li M, Huang C R. A cognition based attention model for sentiment analysis. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing; 2017. p. 462–471. Long Y, Lu Q, Xiang R, Li M, Huang C R. A cognition based attention model for sentiment analysis. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing; 2017. p. 462–471.
16.
Zurück zum Zitat Mishra A, Bhattacharyya P. Automatic extraction of cognitive features from gaze data. Cognitively Inspired Natural Language Processing: Springer; 2018. p. 153–69. Mishra A, Bhattacharyya P. Automatic extraction of cognitive features from gaze data. Cognitively Inspired Natural Language Processing: Springer; 2018. p. 153–69.
17.
Zurück zum Zitat Xing FZ, Pallucchini F, Cambria E. Cognitive-inspired domain adaptation of sentiment lexicons. Inf Process Manag. 2019;56(3):554–64. Xing FZ, Pallucchini F, Cambria E. Cognitive-inspired domain adaptation of sentiment lexicons. Inf Process Manag. 2019;56(3):554–64.
18.
Zurück zum Zitat Zupic I, Čater T. Bibliometric methods in management and organization. Organ Res Methods. 2015;18(3):429–72. Zupic I, Čater T. Bibliometric methods in management and organization. Organ Res Methods. 2015;18(3):429–72.
19.
Zurück zum Zitat Piryani R, Madhavi D, Singh VK. Analytical mapping of opinion mining and sentiment analysis research during 2000–2015. Inf Process Manag. 2017;53(1):122–50. Piryani R, Madhavi D, Singh VK. Analytical mapping of opinion mining and sentiment analysis research during 2000–2015. Inf Process Manag. 2017;53(1):122–50.
20.
Zurück zum Zitat Keramatfar A, Amirkhani H. Bibliometrics of sentiment analysis literature. J Inf Sci. 2019;45(1):3–15. Keramatfar A, Amirkhani H. Bibliometrics of sentiment analysis literature. J Inf Sci. 2019;45(1):3–15.
21.
Zurück zum Zitat Mäntylä MV, Graziotin D, Kuutila M. The evolution of sentiment analysis—a review of research topics, venues, and top cited papers. Comput Sci Rev. 2018;27:16–32. Mäntylä MV, Graziotin D, Kuutila M. The evolution of sentiment analysis—a review of research topics, venues, and top cited papers. Comput Sci Rev. 2018;27:16–32.
22.
Zurück zum Zitat Ahlgren O. Research on sentiment analysis: the first decade. 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW): IEEE; 2016. p. 890–899. Ahlgren O. Research on sentiment analysis: the first decade. 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW): IEEE; 2016. p. 890–899.
23.
Zurück zum Zitat Tubishat M, Idris N, Abushariah MA. Implicit aspect extraction in sentiment analysis: review, taxonomy, opportunities, and open challenges. Inf Process Manag. 2018;54(4):545–63. Tubishat M, Idris N, Abushariah MA. Implicit aspect extraction in sentiment analysis: review, taxonomy, opportunities, and open challenges. Inf Process Manag. 2018;54(4):545–63.
24.
Zurück zum Zitat Zhang D, Wu C, Liu J. Ranking products with online reviews: a novel method based on hesitant fuzzy set and sentiment word framework. J Oper Res Soc. 2020;71(3):528–42. Zhang D, Wu C, Liu J. Ranking products with online reviews: a novel method based on hesitant fuzzy set and sentiment word framework. J Oper Res Soc. 2020;71(3):528–42.
25.
Zurück zum Zitat Zhou X, Tao X, Rahman MM, Zhang J. Coupling topic modelling in opinion mining for social media analysis. Proc Int Conf Web Intell. 2017:533–40. Zhou X, Tao X, Rahman MM, Zhang J. Coupling topic modelling in opinion mining for social media analysis. Proc Int Conf Web Intell. 2017:533–40.
26.
Zurück zum Zitat Tao X, Zhou X, Zhang J, Yong J. Sentiment analysis for depression detection on social networks. International Conference on Advanced Data Mining and Applications: Springer; 2016. p. 807–810. Tao X, Zhou X, Zhang J, Yong J. Sentiment analysis for depression detection on social networks. International Conference on Advanced Data Mining and Applications: Springer; 2016. p. 807–810.
27.
Zurück zum Zitat Liu Z, Liu S, Liu L, Sun J, Peng X, Wang T. Sentiment recognition of online course reviews using multi-swarm optimization-based selected features. Neurocomputing. 2016;185:11–20. Liu Z, Liu S, Liu L, Sun J, Peng X, Wang T. Sentiment recognition of online course reviews using multi-swarm optimization-based selected features. Neurocomputing. 2016;185:11–20.
28.
Zurück zum Zitat Al-Moslmi T, Albared M, Al-Shabi A, Omar N, Abdullah S. Arabic senti-lexicon: constructing publicly available language resources for Arabic sentiment analysis. J Inf Sci. 2018;44(3):345–62. Al-Moslmi T, Albared M, Al-Shabi A, Omar N, Abdullah S. Arabic senti-lexicon: constructing publicly available language resources for Arabic sentiment analysis. J Inf Sci. 2018;44(3):345–62.
29.
Zurück zum Zitat Wu F, Huang Y, Song Y. Structured microblog sentiment classification via social context regularization. Neurocomputing. 2016;175:599–609. Wu F, Huang Y, Song Y. Structured microblog sentiment classification via social context regularization. Neurocomputing. 2016;175:599–609.
30.
Zurück zum Zitat Al-Moslmi T, Omar N, Abdullah S, Albared M. Approaches to cross-domain sentiment analysis: a systematic literature review. IEEE Access. 2017;5:16173–92. Al-Moslmi T, Omar N, Abdullah S, Albared M. Approaches to cross-domain sentiment analysis: a systematic literature review. IEEE Access. 2017;5:16173–92.
31.
Zurück zum Zitat Kang M, Ahn J, Lee K. Opinion mining using ensemble text hidden Markov models for text classification. Expert Syst Appl. 2018;94:218–27. Kang M, Ahn J, Lee K. Opinion mining using ensemble text hidden Markov models for text classification. Expert Syst Appl. 2018;94:218–27.
32.
Zurück zum Zitat Calefato F, Lanubile F, Maiorano F, Novielli N. Sentiment polarity detection for software development. Empir Softw Eng. 2018;23(3):1352–82. Calefato F, Lanubile F, Maiorano F, Novielli N. Sentiment polarity detection for software development. Empir Softw Eng. 2018;23(3):1352–82.
33.
Zurück zum Zitat Li Y, Pan Q, Wang S, Yang T, Cambria E. A generative model for category text generation. Inf Sci. 2018;450:301–15. MathSciNet Li Y, Pan Q, Wang S, Yang T, Cambria E. A generative model for category text generation. Inf Sci. 2018;450:301–15. MathSciNet
34.
Zurück zum Zitat Zhang Z, Zou Y, Gan C. Textual sentiment analysis via three different attention convolutional neural networks and cross-modality consistent regression. Neurocomputing. 2018;275:1407–15. Zhang Z, Zou Y, Gan C. Textual sentiment analysis via three different attention convolutional neural networks and cross-modality consistent regression. Neurocomputing. 2018;275:1407–15.
35.
Zurück zum Zitat García-Pablos A, Cuadros M, Rigau G. W2VLDA: almost unsupervised system for aspect based sentiment analysis. Expert Syst Appl. 2018;91:127–37. García-Pablos A, Cuadros M, Rigau G. W2VLDA: almost unsupervised system for aspect based sentiment analysis. Expert Syst Appl. 2018;91:127–37.
36.
Zurück zum Zitat Jianqiang Z, Xiaolin G, Xuejun Z. Deep convolution neural networks for twitter sentiment analysis. IEEE Access. 2018;6:23253–60. Jianqiang Z, Xiaolin G, Xuejun Z. Deep convolution neural networks for twitter sentiment analysis. IEEE Access. 2018;6:23253–60.
37.
Zurück zum Zitat Hassan A, Mahmood A. Convolutional recurrent deep learning model for sentence classification. IEEE Access. 2018;6:13949–57. Hassan A, Mahmood A. Convolutional recurrent deep learning model for sentence classification. IEEE Access. 2018;6:13949–57.
38.
Zurück zum Zitat Arif MH, Li J, Iqbal M, Liu K. Sentiment analysis and spam detection in short informal text using learning classifier systems. Soft Comput. 2018;22(21):7281–91. Arif MH, Li J, Iqbal M, Liu K. Sentiment analysis and spam detection in short informal text using learning classifier systems. Soft Comput. 2018;22(21):7281–91.
39.
Zurück zum Zitat Dashtipour K, Gogate M, Li J, Jiang F, Kong B, Hussain A. A hybrid Persian sentiment analysis framework: integrating dependency grammar based rules and deep neural networks. Neurocomputing. 2020;380:1–10. Dashtipour K, Gogate M, Li J, Jiang F, Kong B, Hussain A. A hybrid Persian sentiment analysis framework: integrating dependency grammar based rules and deep neural networks. Neurocomputing. 2020;380:1–10.
40.
Zurück zum Zitat Bahassine S, Madani A, Al-Sarem M, Kissi M. Feature selection using an improved Chi-square for Arabic text classification. J King Saud Univ Comp & Info Sci. 2020;32(2):225–31. Bahassine S, Madani A, Al-Sarem M, Kissi M. Feature selection using an improved Chi-square for Arabic text classification. J King Saud Univ Comp & Info Sci. 2020;32(2):225–31.
41.
Zurück zum Zitat Song M, Park H, Shin K. Attention-based long short-term memory network using sentiment lexicon embedding for aspect-level sentiment analysis in Korean. Inf Process Manag. 2019;56(3):637–53. Song M, Park H, Shin K. Attention-based long short-term memory network using sentiment lexicon embedding for aspect-level sentiment analysis in Korean. Inf Process Manag. 2019;56(3):637–53.
42.
Zurück zum Zitat Dragoni M, Poria S, Cambria E. OntoSenticNet: a commonsense ontology for sentiment analysis. IEEE Intell Syst. 2018;33(3):77–85. Dragoni M, Poria S, Cambria E. OntoSenticNet: a commonsense ontology for sentiment analysis. IEEE Intell Syst. 2018;33(3):77–85.
43.
Zurück zum Zitat Yang Q, Rao Y, Xie H, Wang J, Wang FL, Chan WH, et al. Segment-level joint topic-sentiment model for online review analysis. IEEE Intell Syst. 2019;34(1):43–50. Yang Q, Rao Y, Xie H, Wang J, Wang FL, Chan WH, et al. Segment-level joint topic-sentiment model for online review analysis. IEEE Intell Syst. 2019;34(1):43–50.
44.
Zurück zum Zitat Kumar A, Sebastian TM. Sentiment analysis: a perspective on its past, present and future. Int J Intell Syst Appl. 2012;4(10):1–14. Kumar A, Sebastian TM. Sentiment analysis: a perspective on its past, present and future. Int J Intell Syst Appl. 2012;4(10):1–14.
45.
Zurück zum Zitat Serrano-Guerrero J, Olivas JA, Romero FP, Herrera-Viedma E. Sentiment analysis: a review and comparative analysis of web services. Inf Sci. 2015;311:18–38. Serrano-Guerrero J, Olivas JA, Romero FP, Herrera-Viedma E. Sentiment analysis: a review and comparative analysis of web services. Inf Sci. 2015;311:18–38.
46.
Zurück zum Zitat Cambria E, Poria S, Gelbukh A, Thelwall M. Sentiment analysis is a big suitcase. IEEE Intell Syst. 2017;32(6):74–80. Cambria E, Poria S, Gelbukh A, Thelwall M. Sentiment analysis is a big suitcase. IEEE Intell Syst. 2017;32(6):74–80.
47.
Zurück zum Zitat Li X, Rao Y, Xie H, Liu X, Wong T-L, Wang FL. Social emotion classification based on noise-aware training. Data Knowl Eng. 2019;123:101605. Li X, Rao Y, Xie H, Liu X, Wong T-L, Wang FL. Social emotion classification based on noise-aware training. Data Knowl Eng. 2019;123:101605.
48.
Zurück zum Zitat Liang W, Xie H, Rao Y, Lau RY, Wang FL. Universal affective model for readers’ emotion classification over short texts. Expert Syst Appl. 2018;114:322–33. Liang W, Xie H, Rao Y, Lau RY, Wang FL. Universal affective model for readers’ emotion classification over short texts. Expert Syst Appl. 2018;114:322–33.
49.
Zurück zum Zitat Li X, Rao Y, Xie H, Lau RYK, Yin J, Wang FL. Bootstrapping social emotion classification with semantically rich hybrid neural networks. IEEE Trans Affect Comput. 2017;8(4):428–42. Li X, Rao Y, Xie H, Lau RYK, Yin J, Wang FL. Bootstrapping social emotion classification with semantically rich hybrid neural networks. IEEE Trans Affect Comput. 2017;8(4):428–42.
50.
Zurück zum Zitat Rao Y, Xie H, Li J, Jin F, Wang FL, Li Q. Social emotion classification of short text via topic-level maximum entropy model. Inf Manag. 2016;53(8):978–86. Rao Y, Xie H, Li J, Jin F, Wang FL, Li Q. Social emotion classification of short text via topic-level maximum entropy model. Inf Manag. 2016;53(8):978–86.
51.
Zurück zum Zitat Taj S, Shaikh BB, Meghji AF. Sentiment analysis of news articles: a lexicon based approach. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET): IEEE; 2019. p. 1–5. Taj S, Shaikh BB, Meghji AF. Sentiment analysis of news articles: a lexicon based approach. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET): IEEE; 2019. p. 1–5.
52.
Zurück zum Zitat Ilic S, Marrese-Taylor E, Balazs J, Matsuo Y. Deep contextualized word representations for detecting sarcasm and irony. Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis; 2018. p. 2–7. Ilic S, Marrese-Taylor E, Balazs J, Matsuo Y. Deep contextualized word representations for detecting sarcasm and irony. Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis; 2018. p. 2–7.
53.
Zurück zum Zitat Burgers C, de Lavalette KYR, Steen GJ. Metaphor, hyperbole, and irony: uses in isolation and in combination in written discourse. J Pragmat. 2018;127:71–83. Burgers C, de Lavalette KYR, Steen GJ. Metaphor, hyperbole, and irony: uses in isolation and in combination in written discourse. J Pragmat. 2018;127:71–83.
54.
Zurück zum Zitat Kim K, Lee J. Sentiment visualization and classification via semi-supervised nonlinear dimensionality reduction. Pattern Recogn. 2014;47(2):758–68. Kim K, Lee J. Sentiment visualization and classification via semi-supervised nonlinear dimensionality reduction. Pattern Recogn. 2014;47(2):758–68.
55.
Zurück zum Zitat Rambocas M, Pacheco BG. Online sentiment analysis in marketing research: a review. J Res Interact Mark. 2018;12(2):146–63. Rambocas M, Pacheco BG. Online sentiment analysis in marketing research: a review. J Res Interact Mark. 2018;12(2):146–63.
56.
Zurück zum Zitat Contratres FG, Alves-Souza SN, Filgueiras LVL, DeSouza LS. Sentiment analysis of social network data for cold-start relief in recommender systems. World Conference on Information Systems and Technologies: Springer; 2018. p. 122–132. Contratres FG, Alves-Souza SN, Filgueiras LVL, DeSouza LS. Sentiment analysis of social network data for cold-start relief in recommender systems. World Conference on Information Systems and Technologies: Springer; 2018. p. 122–132.
57.
Zurück zum Zitat Li X, Xie H, Song Y, Zhu S, Li Q, Wang FL. Does summarization help stock prediction? A news impact analysis. IEEE Intell Syst. 2015;30(3):26–34. Li X, Xie H, Song Y, Zhu S, Li Q, Wang FL. Does summarization help stock prediction? A news impact analysis. IEEE Intell Syst. 2015;30(3):26–34.
58.
Zurück zum Zitat Li X, Xie H, Wang R, Cai Y, Cao J, Wang F, et al. Empirical analysis: stock market prediction via extreme learning machine. Neural Comput & Applic. 2016;27(1):67–78. Li X, Xie H, Wang R, Cai Y, Cao J, Wang F, et al. Empirical analysis: stock market prediction via extreme learning machine. Neural Comput & Applic. 2016;27(1):67–78.
59.
Zurück zum Zitat Seifollahi S, Shajari M. Word sense disambiguation application in sentiment analysis of news headlines: an applied approach to FOREX market prediction. J Intell Inf Syst. 2019;52(1):57–83. Seifollahi S, Shajari M. Word sense disambiguation application in sentiment analysis of news headlines: an applied approach to FOREX market prediction. J Intell Inf Syst. 2019;52(1):57–83.
60.
Zurück zum Zitat Li X, Xie H, Chen L, Wang J, Deng X. News impact on stock price return via sentiment analysis. Knowl-Based Syst. 2014;69:14–23. Li X, Xie H, Chen L, Wang J, Deng X. News impact on stock price return via sentiment analysis. Knowl-Based Syst. 2014;69:14–23.
61.
Zurück zum Zitat Alaei AR, Becken S, Stantic B. Sentiment analysis in tourism: capitalizing on big data. J Travel Res. 2019;58(2):175–91. Alaei AR, Becken S, Stantic B. Sentiment analysis in tourism: capitalizing on big data. J Travel Res. 2019;58(2):175–91.
62.
Zurück zum Zitat Kiritchenko S, Zhu X, Mohammad SM. Sentiment analysis of short informal texts. J Artif Intell Res. 2014;50:723–62. Kiritchenko S, Zhu X, Mohammad SM. Sentiment analysis of short informal texts. J Artif Intell Res. 2014;50:723–62.
63.
Zurück zum Zitat Nandal N, Tanwar R, Pruthi J. Machine learning based aspect level sentiment analysis for Amazon products. Spat Inf Res. 2020:1–7. Nandal N, Tanwar R, Pruthi J. Machine learning based aspect level sentiment analysis for Amazon products. Spat Inf Res. 2020:1–7.
64.
Zurück zum Zitat Jiménez-Zafra SM, Taulé M, Martín-Valdivia MT, Ureña-López LA, Martí MA. SFU review SP-NEG: a Spanish corpus annotated with negation for sentiment analysis. A typology of negation patterns. Lang Resour Eval. 2018;52(2):533–69. Jiménez-Zafra SM, Taulé M, Martín-Valdivia MT, Ureña-López LA, Martí MA. SFU review SP-NEG: a Spanish corpus annotated with negation for sentiment analysis. A typology of negation patterns. Lang Resour Eval. 2018;52(2):533–69.
65.
Zurück zum Zitat El Alaoui I, Gahi Y, Messoussi R, Chaabi Y, Todoskoff A, Kobi A. A novel adaptable approach for sentiment analysis on big social data. J Big Data. 2018;5(1):12–30. El Alaoui I, Gahi Y, Messoussi R, Chaabi Y, Todoskoff A, Kobi A. A novel adaptable approach for sentiment analysis on big social data. J Big Data. 2018;5(1):12–30.
66.
Zurück zum Zitat Dandannavar P, Mangalwede S, Deshpande S. Emoticons and their effects on sentiment analysis of Twitter data. EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing: Springer; 2020. p. 191–201. Dandannavar P, Mangalwede S, Deshpande S. Emoticons and their effects on sentiment analysis of Twitter data. EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing: Springer; 2020. p. 191–201.
67.
Zurück zum Zitat Peng Q, Zhong M. Detecting spam review through sentiment analysis. JSW. 2014;9(8):2065–72. Peng Q, Zhong M. Detecting spam review through sentiment analysis. JSW. 2014;9(8):2065–72.
68.
Zurück zum Zitat Guzman E, Maalej W. How do users like this feature? A fine grained sentiment analysis of app reviews. 2014 IEEE 22nd International Requirements Engineering Conference (RE): IEEE; 2014. p. 153–162. Guzman E, Maalej W. How do users like this feature? A fine grained sentiment analysis of app reviews. 2014 IEEE 22nd International Requirements Engineering Conference (RE): IEEE; 2014. p. 153–162.
69.
Zurück zum Zitat Batistič S, van der Laken P. History, evolution and future of big data and analytics: a bibliometric analysis of its relationship to performance in organizations. Br J Manag. 2019;30(2):229–51. Batistič S, van der Laken P. History, evolution and future of big data and analytics: a bibliometric analysis of its relationship to performance in organizations. Br J Manag. 2019;30(2):229–51.
70.
Zurück zum Zitat Peng B, Guo D, Qiao H, Yang Q, Zhang B, Hayat T, et al. Bibliometric and visualized analysis of China’s coal research 2000-2015. J Clean Prod. 2018;197:1177–89. Peng B, Guo D, Qiao H, Yang Q, Zhang B, Hayat T, et al. Bibliometric and visualized analysis of China’s coal research 2000-2015. J Clean Prod. 2018;197:1177–89.
71.
Zurück zum Zitat Song Y, Chen X, Hao T, Liu Z, Lan Z. Exploring two decades of research on classroom dialogue by using bibliometric analysis. Comput Educ. 2019;137:12–31. Song Y, Chen X, Hao T, Liu Z, Lan Z. Exploring two decades of research on classroom dialogue by using bibliometric analysis. Comput Educ. 2019;137:12–31.
72.
Zurück zum Zitat Martinho VJPD. Best management practices from agricultural economics: mitigating air, soil and water pollution. Sci Total Environ. 2019;688:346–60. Martinho VJPD. Best management practices from agricultural economics: mitigating air, soil and water pollution. Sci Total Environ. 2019;688:346–60.
73.
Zurück zum Zitat Jiang Y, Ritchie BW, Benckendorff P. Bibliometric visualisation: an application in tourism crisis and disaster management research. Curr Issue Tour. 2019;22(16):1925–57. Jiang Y, Ritchie BW, Benckendorff P. Bibliometric visualisation: an application in tourism crisis and disaster management research. Curr Issue Tour. 2019;22(16):1925–57.
74.
Zurück zum Zitat Pang R, Zhang X. Achieving environmental sustainability in manufacture: a 28-year bibliometric cartography of green manufacturing research. J Clean Prod. 2019;233:84–99. Pang R, Zhang X. Achieving environmental sustainability in manufacture: a 28-year bibliometric cartography of green manufacturing research. J Clean Prod. 2019;233:84–99.
75.
Zurück zum Zitat Chen X, Wang S, Tang Y, Hao T. A bibliometric analysis of event detection in social media. Online Inf Rev. 2019;43(1):29–52. Chen X, Wang S, Tang Y, Hao T. A bibliometric analysis of event detection in social media. Online Inf Rev. 2019;43(1):29–52.
76.
Zurück zum Zitat Chen X, Lun Y, Yan J, Hao T, Weng H. Discovering thematic change and evolution of utilizing social media for healthcare research. BMC Med Inform Decis Making. 2019;19(2):39–53. Chen X, Lun Y, Yan J, Hao T, Weng H. Discovering thematic change and evolution of utilizing social media for healthcare research. BMC Med Inform Decis Making. 2019;19(2):39–53.
77.
Zurück zum Zitat Chen X, Liu Z, Wei L, Yan J, Hao T, Ding R. A comparative quantitative study of utilizing artificial intelligence on electronic health records in the USA and China during 2008-2017. BMC Med Inform Decis Making. 2018;18(5):55–69. Chen X, Liu Z, Wei L, Yan J, Hao T, Ding R. A comparative quantitative study of utilizing artificial intelligence on electronic health records in the USA and China during 2008-2017. BMC Med Inform Decis Making. 2018;18(5):55–69.
78.
Zurück zum Zitat Hao T, Chen X, Li G, Yan J. A bibliometric analysis of text mining in medical research. Soft Comput. 2018;22(23):7875–92. Hao T, Chen X, Li G, Yan J. A bibliometric analysis of text mining in medical research. Soft Comput. 2018;22(23):7875–92.
79.
Zurück zum Zitat Chen X, Xie H, Wang FL, Liu Z, Xu J, Hao T. A bibliometric analysis of natural language processing in medical research. BMC Med Inform Decis Making. 2018;18(1):1–14. Chen X, Xie H, Wang FL, Liu Z, Xu J, Hao T. A bibliometric analysis of natural language processing in medical research. BMC Med Inform Decis Making. 2018;18(1):1–14.
80.
Zurück zum Zitat Chen X, Zhang X, Xie H, Wang FL, Yan J, Hao T. Trends and features of human brain research using artificial intelligence techniques: a bibliometric approach. International Workshop on Human Brain and Artificial Intelligence: Springer; 2019. p. 69–83. Chen X, Zhang X, Xie H, Wang FL, Yan J, Hao T. Trends and features of human brain research using artificial intelligence techniques: a bibliometric approach. International Workshop on Human Brain and Artificial Intelligence: Springer; 2019. p. 69–83.
81.
Zurück zum Zitat Chen X, Xie H, Cheng G, Poon LK, Leng M, Wang FL. Trends and features of the applications of natural language processing techniques for clinical trials text analysis. Appl Sci. 2020;10(6):2157. Chen X, Xie H, Cheng G, Poon LK, Leng M, Wang FL. Trends and features of the applications of natural language processing techniques for clinical trials text analysis. Appl Sci. 2020;10(6):2157.
82.
Zurück zum Zitat Chen X, Zou D, Xie H. Fifty years of British Journal of Educational Technology: a topic modeling based bibliometric perspective. Br J Educ Technol. 2020:1–17. Chen X, Zou D, Xie H. Fifty years of British Journal of Educational Technology: a topic modeling based bibliometric perspective. Br J Educ Technol. 2020:1–17.
83.
Zurück zum Zitat Roberts ME, Stewart BM, Tingley D, Lucas C, Leder-Luis J, Gadarian SK, et al. Structural topic models for open-ended survey responses. Am J Polit Sci. 2014;58(4):1064–82. Roberts ME, Stewart BM, Tingley D, Lucas C, Leder-Luis J, Gadarian SK, et al. Structural topic models for open-ended survey responses. Am J Polit Sci. 2014;58(4):1064–82.
84.
Zurück zum Zitat Bennett R, Vijaygopal R, Kottasz R. Attitudes towards autonomous vehicles among people with physical disabilities. Transp Res A Policy Pract. 2019;127:1–17. Bennett R, Vijaygopal R, Kottasz R. Attitudes towards autonomous vehicles among people with physical disabilities. Transp Res A Policy Pract. 2019;127:1–17.
85.
Zurück zum Zitat Garcia-Rudolph A, Laxe S, Saurí J, Guitart MB. Stroke survivors on Twitter: sentiment and topic analysis from a gender perspective. J Med Internet Res. 2019;21(8):e14077. Garcia-Rudolph A, Laxe S, Saurí J, Guitart MB. Stroke survivors on Twitter: sentiment and topic analysis from a gender perspective. J Med Internet Res. 2019;21(8):e14077.
86.
Zurück zum Zitat Hsu A, Brandt J, Widerberg O, Chan S, Weinfurter A. Exploring links between national climate strategies and non-state and subnational climate action in nationally determined contributions (NDCs). Clim Pol. 2020;20(4):443–57. Hsu A, Brandt J, Widerberg O, Chan S, Weinfurter A. Exploring links between national climate strategies and non-state and subnational climate action in nationally determined contributions (NDCs). Clim Pol. 2020;20(4):443–57.
87.
Zurück zum Zitat Korfiatis N, Stamolampros P, Kourouthanassis P, Sagiadinos V. Measuring service quality from unstructured data: a topic modeling application on airline passengers’ online reviews. Expert Syst Appl. 2019;116:472–86. Korfiatis N, Stamolampros P, Kourouthanassis P, Sagiadinos V. Measuring service quality from unstructured data: a topic modeling application on airline passengers’ online reviews. Expert Syst Appl. 2019;116:472–86.
88.
Zurück zum Zitat Chandelier M, Steuckardt A, Mathevet R, Diwersy S, Gimenez O. Content analysis of newspaper coverage of wolf recolonization in France using structural topic modeling. Biol Conserv. 2018;220:254–61. Chandelier M, Steuckardt A, Mathevet R, Diwersy S, Gimenez O. Content analysis of newspaper coverage of wolf recolonization in France using structural topic modeling. Biol Conserv. 2018;220:254–61.
89.
Zurück zum Zitat Chen X, Yu G, Cheng G, Hao T. Research topics, author profiles, and collaboration networks in the top-ranked journal on educational technology over the past 40 years: a bibliometric analysis. J Comput Educ. 2019;6(4):563–85. Chen X, Yu G, Cheng G, Hao T. Research topics, author profiles, and collaboration networks in the top-ranked journal on educational technology over the past 40 years: a bibliometric analysis. J Comput Educ. 2019;6(4):563–85.
90.
Zurück zum Zitat Chen X, Zou D, Cheng G, Xie H. Detecting latent topics and trends in educational technologies over four decades using structural topic modeling: a retrospective of all volumes of Computers & Education. Comput Educ. 2020;151:1–53. Chen X, Zou D, Cheng G, Xie H. Detecting latent topics and trends in educational technologies over four decades using structural topic modeling: a retrospective of all volumes of Computers & Education. Comput Educ. 2020;151:1–53.
91.
Zurück zum Zitat Rothschild JE, Howat AJ, Shafranek RM, Busby EC. Pigeonholing partisans: stereotypes of party supporters and partisan polarization. Polit Behav. 2019;41(2):423–43. Rothschild JE, Howat AJ, Shafranek RM, Busby EC. Pigeonholing partisans: stereotypes of party supporters and partisan polarization. Polit Behav. 2019;41(2):423–43.
92.
Zurück zum Zitat Chen X, Chen J, Cheng G, Gong T. Topics and trends in artificial intelligence assisted human brain research. PLoS One. 2020;15(4):e0231192. Chen X, Chen J, Cheng G, Gong T. Topics and trends in artificial intelligence assisted human brain research. PLoS One. 2020;15(4):e0231192.
93.
Zurück zum Zitat Roberts ME, Stewart BM, Tingley D. Stm: R package for structural topic models. J Stat Softw. 2014;10(2):1–40. Roberts ME, Stewart BM, Tingley D. Stm: R package for structural topic models. J Stat Softw. 2014;10(2):1–40.
94.
Zurück zum Zitat Jiang H, Qiang M, Lin P. A topic modeling based bibliometric exploration of hydropower research. Renew Sust Energ Rev. 2016;57:226–37. Jiang H, Qiang M, Lin P. A topic modeling based bibliometric exploration of hydropower research. Renew Sust Energ Rev. 2016;57:226–37.
95.
Zurück zum Zitat Farrell J. Corporate funding and ideological polarization about climate change. Proc Natl Acad Sci USA. 2016;113(1):92–7. Farrell J. Corporate funding and ideological polarization about climate change. Proc Natl Acad Sci USA. 2016;113(1):92–7.
96.
Zurück zum Zitat Tvinnereim E, Fløttum K. Explaining topic prevalence in answers to open-ended survey questions about climate change. Nat Clim Chang. 2015;5(8):744–7. Tvinnereim E, Fløttum K. Explaining topic prevalence in answers to open-ended survey questions about climate change. Nat Clim Chang. 2015;5(8):744–7.
97.
Zurück zum Zitat Jiang H, Qiang M, Fan Q, Zhang M. Scientific research driven by large-scale infrastructure projects: a case study of the Three Gorges Project in China. Technol Forecast Soc Chang. 2018;134:61–71. Jiang H, Qiang M, Fan Q, Zhang M. Scientific research driven by large-scale infrastructure projects: a case study of the Three Gorges Project in China. Technol Forecast Soc Chang. 2018;134:61–71.
98.
99.
Zurück zum Zitat Chen X, Hao T. Quantifying and visualizing the research status of social media and health research field. Social Web and Health Research: Springer; 2019. p. 31–51. Chen X, Hao T. Quantifying and visualizing the research status of social media and health research field. Social Web and Health Research: Springer; 2019. p. 31–51.
100.
Zurück zum Zitat Hirsch JE, Buela-Casal G. The meaning of the h-index. Int J Clin Health Psychol. 2014;14(2):161–4. Hirsch JE, Buela-Casal G. The meaning of the h-index. Int J Clin Health Psychol. 2014;14(2):161–4.
101.
Zurück zum Zitat Liu B. Sentiment analysis: mining opinions, sentiments, and emotions: Cambridge University Press; 2015. p. 8. Liu B. Sentiment analysis: mining opinions, sentiments, and emotions: Cambridge University Press; 2015. p. 8.
102.
Zurück zum Zitat Zhao Y, Qin B, Liu T. Exploiting syntactic and semantic kernels for target-polarity word collocation extraction. 2018 First Asian Conference on Affective Computing and Intelligent Interaction (ACII Asia): IEEE; 2018. p. 1–6. Zhao Y, Qin B, Liu T. Exploiting syntactic and semantic kernels for target-polarity word collocation extraction. 2018 First Asian Conference on Affective Computing and Intelligent Interaction (ACII Asia): IEEE; 2018. p. 1–6.
103.
Zurück zum Zitat He J, Song T, Peng W, Sheng Q, Song J. Automatic acquisition of matching patterns for pattern-based parsing on specific Chinese text. 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW): IEEE; 2016. p. 17–20. He J, Song T, Peng W, Sheng Q, Song J. Automatic acquisition of matching patterns for pattern-based parsing on specific Chinese text. 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW): IEEE; 2016. p. 17–20.
104.
Zurück zum Zitat Xiong S, Ji D. Exploiting capacity-constrained k-means clustering for aspect-phrase grouping. International Conference on Knowledge Science, Engineering and Management: Springer; 2015. p. 370–381. Xiong S, Ji D. Exploiting capacity-constrained k-means clustering for aspect-phrase grouping. International Conference on Knowledge Science, Engineering and Management: Springer; 2015. p. 370–381.
105.
Zurück zum Zitat Araque O, Zhu G, García-Amado M, Iglesias CA. Mining the opinionated web: classification and detection of aspect contexts for aspect based sentiment analysis. 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW): IEEE; 2016. p. 900–907. Araque O, Zhu G, García-Amado M, Iglesias CA. Mining the opinionated web: classification and detection of aspect contexts for aspect based sentiment analysis. 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW): IEEE; 2016. p. 900–907.
106.
Zurück zum Zitat Chen G, Zhang Q, Chen D. A pair-wise method for aspect-based sentiment analysis. International Conference on Cognitive Computing: Springer; 2018. p. 18–29. Chen G, Zhang Q, Chen D. A pair-wise method for aspect-based sentiment analysis. International Conference on Cognitive Computing: Springer; 2018. p. 18–29.
107.
Zurück zum Zitat Qasem M, Thulasiraman P, Thulasiram RK. Constrained ant brood clustering algorithm with adaptive radius: a case study on aspect based sentiment analysis. 2017 IEEE Symposium Series on Computational Intelligence (SSCI): IEEE; 2017. p. 1–8. Qasem M, Thulasiraman P, Thulasiram RK. Constrained ant brood clustering algorithm with adaptive radius: a case study on aspect based sentiment analysis. 2017 IEEE Symposium Series on Computational Intelligence (SSCI): IEEE; 2017. p. 1–8.
108.
Zurück zum Zitat Omurca Sİ, Ekinci E. Using adjusted Laplace smoothing to extract implicit aspects from Turkish hotel reviews. 2018 Innovations in Intelligent Systems and Applications (INISTA): IEEE; 2018.p. 1–6. Omurca Sİ, Ekinci E. Using adjusted Laplace smoothing to extract implicit aspects from Turkish hotel reviews. 2018 Innovations in Intelligent Systems and Applications (INISTA): IEEE; 2018.p. 1–6.
109.
Zurück zum Zitat Singh JP, Irani S, Rana NP, Dwivedi YK, Saumya S, Roy PK. Predicting the “helpfulness” of online consumer reviews. J Bus Res. 2017;70:346–55. Singh JP, Irani S, Rana NP, Dwivedi YK, Saumya S, Roy PK. Predicting the “helpfulness” of online consumer reviews. J Bus Res. 2017;70:346–55.
110.
Zurück zum Zitat Liang T-P, Li X, Yang C-T, Wang M. What in consumer reviews affects the sales of mobile apps: a multifacet sentiment analysis approach. Int J Electron Commer. 2015;20(2):236–60. Liang T-P, Li X, Yang C-T, Wang M. What in consumer reviews affects the sales of mobile apps: a multifacet sentiment analysis approach. Int J Electron Commer. 2015;20(2):236–60.
111.
Zurück zum Zitat Garg P, Garg H, Ranga V. Sentiment analysis of the Uri terror attack using Twitter. 2017 International Conference on Computing, Communication and Automation (ICCCA): IEEE; 2017. p. 17–20. Garg P, Garg H, Ranga V. Sentiment analysis of the Uri terror attack using Twitter. 2017 International Conference on Computing, Communication and Automation (ICCCA): IEEE; 2017. p. 17–20.
112.
Zurück zum Zitat Han S, Kavuluru R. On assessing the sentiment of general tweets. Canadian Conference on Artificial Intelligence: Springer; 2015. p. 181–195. Han S, Kavuluru R. On assessing the sentiment of general tweets. Canadian Conference on Artificial Intelligence: Springer; 2015. p. 181–195.
113.
Zurück zum Zitat Raja M, Swamynathan S. Tweet sentiment analyzer: sentiment score estimation method for assessing the value of opinions in tweets. Proceedings of the International Conference on Advances in Information Communication Technology & Computing: ACM; 2016. p. 1–6. Raja M, Swamynathan S. Tweet sentiment analyzer: sentiment score estimation method for assessing the value of opinions in tweets. Proceedings of the International Conference on Advances in Information Communication Technology & Computing: ACM; 2016. p. 1–6.
114.
Zurück zum Zitat Gul S, Mahajan I, Nisa NT, Shah TA, Asifa J, Ahmad S. Tweets speak louder than leaders and masses: an analysis of tweets about the Jammu and Kashmir elections 2014. Online Inf Rev. 2016;40(7):900–12. Gul S, Mahajan I, Nisa NT, Shah TA, Asifa J, Ahmad S. Tweets speak louder than leaders and masses: an analysis of tweets about the Jammu and Kashmir elections 2014. Online Inf Rev. 2016;40(7):900–12.
115.
Zurück zum Zitat Singh P, Sawhney RS, Kahlon KS. Predicting the outcome of Spanish general elections 2016 using Twitter as a tool. International Conference on Advanced Informatics for Computing Research: Springer; 2017. p. 73–83. Singh P, Sawhney RS, Kahlon KS. Predicting the outcome of Spanish general elections 2016 using Twitter as a tool. International Conference on Advanced Informatics for Computing Research: Springer; 2017. p. 73–83.
116.
Zurück zum Zitat Dinkić N, Džaković N, Joković J, Stoimenov L, Đukić A. Using sentiment analysis of Twitter data for determining popularity of city locations. International Conference on ICT Innovations: Springer; 2016. p. 156–164. Dinkić N, Džaković N, Joković J, Stoimenov L, Đukić A. Using sentiment analysis of Twitter data for determining popularity of city locations. International Conference on ICT Innovations: Springer; 2016. p. 156–164.
117.
Zurück zum Zitat Purnamasari PD, Taqiyuddin M, Ratna AAP. Performance comparison of text-based sentiment analysis using recurrent neural network and convolutional neural network. Proceedings of the 3rd International Conference on Communication and Information Processing: ACM; 2017. p. 19–23. Purnamasari PD, Taqiyuddin M, Ratna AAP. Performance comparison of text-based sentiment analysis using recurrent neural network and convolutional neural network. Proceedings of the 3rd International Conference on Communication and Information Processing: ACM; 2017. p. 19–23.
118.
Zurück zum Zitat Huang Q, Chen R, Zheng X, Dong Z. Deep sentiment representation based on CNN and LSTM. 2017 International Conference on Green Informatics (ICGI): IEEE; 2017. p. 30–33. Huang Q, Chen R, Zheng X, Dong Z. Deep sentiment representation based on CNN and LSTM. 2017 International Conference on Green Informatics (ICGI): IEEE; 2017. p. 30–33.
119.
Zurück zum Zitat Kuta M, Morawiec M, Kitowski J. Sentiment analysis with tree-structured gated recurrent units. International Conference on Text, Speech, and Dialogue: Springer; 2017. p. 74–82. Kuta M, Morawiec M, Kitowski J. Sentiment analysis with tree-structured gated recurrent units. International Conference on Text, Speech, and Dialogue: Springer; 2017. p. 74–82.
120.
Zurück zum Zitat Huang M, Xie H, Rao Y, Feng J, Wang FL. Sentiment strength detection with a context-dependent lexicon-based convolutional neural network. Inf Sci. 2020;520:389–99. Huang M, Xie H, Rao Y, Feng J, Wang FL. Sentiment strength detection with a context-dependent lexicon-based convolutional neural network. Inf Sci. 2020;520:389–99.
121.
Zurück zum Zitat Sato M, Orihara R, Sei Y, Tahara Y, Ohsuga A. Text classification and transfer learning based on character-level deep convolutional neural networks. International Conference on Agents and Artificial Intelligence: Springer; 2017. p. 62–81. Sato M, Orihara R, Sei Y, Tahara Y, Ohsuga A. Text classification and transfer learning based on character-level deep convolutional neural networks. International Conference on Agents and Artificial Intelligence: Springer; 2017. p. 62–81.
122.
Zurück zum Zitat Bodrunova SS, Blekanov IS, Kukarkin M, Zhuravleva N. Negative a/effect: sentiment of French-speaking users and its impact upon affective hashtags on Charlie Hebdo. International Conference on Internet Science: Springer; 2018. p. 226–241. Bodrunova SS, Blekanov IS, Kukarkin M, Zhuravleva N. Negative a/effect: sentiment of French-speaking users and its impact upon affective hashtags on Charlie Hebdo. International Conference on Internet Science: Springer; 2018. p. 226–241.
123.
Zurück zum Zitat Chen X, Qin Z, Zhang Y, Xu T. Learning to rank features for recommendation over multiple categories. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval:ACM; 2016. p. 305–314. Chen X, Qin Z, Zhang Y, Xu T. Learning to rank features for recommendation over multiple categories. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval:ACM; 2016. p. 305–314.
124.
Zurück zum Zitat Chen S, Huang Y, Huang W. Big data analytics on aviation social media: the case of china southern airlines on sina weibo. 2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService): IEEE; 2016. p. 152–155. Chen S, Huang Y, Huang W. Big data analytics on aviation social media: the case of china southern airlines on sina weibo. 2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService): IEEE; 2016. p. 152–155.
125.
Zurück zum Zitat Yun Y, Hooshyar D, Jo J, Lim H. Developing a hybrid collaborative filtering recommendation system with opinion mining on purchase review. J Inf Sci. 2018;44(3):331–44. Yun Y, Hooshyar D, Jo J, Lim H. Developing a hybrid collaborative filtering recommendation system with opinion mining on purchase review. J Inf Sci. 2018;44(3):331–44.
126.
Zurück zum Zitat Yan Q, Zhou S, Wu S. The influences of tourists’ emotions on the selection of electronic word of mouth platforms. Tour Manag. 2018;66:348–63. Yan Q, Zhou S, Wu S. The influences of tourists’ emotions on the selection of electronic word of mouth platforms. Tour Manag. 2018;66:348–63.
127.
Zurück zum Zitat Jayaratna MSH, Bouguettaya A, Dong H, Qin K, Erradi A. Subjective evaluation of market-driven cloud services. 2017 IEEE International Conference on Web Services (ICWS): IEEE; 2017. p. 516–523. Jayaratna MSH, Bouguettaya A, Dong H, Qin K, Erradi A. Subjective evaluation of market-driven cloud services. 2017 IEEE International Conference on Web Services (ICWS): IEEE; 2017. p. 516–523.
128.
Zurück zum Zitat López MB, Alor-Hernández G, Sánchez-Cervantes JL, del Pilar S-ZM, Paredes-Valverde MA. EduRP: an educational resources platform based on opinion mining and semantic web. J Univ Comput Sci. 2018;24(11):1515–35. López MB, Alor-Hernández G, Sánchez-Cervantes JL, del Pilar S-ZM, Paredes-Valverde MA. EduRP: an educational resources platform based on opinion mining and semantic web. J Univ Comput Sci. 2018;24(11):1515–35.
129.
Zurück zum Zitat Esparza GG, de Luna A, Zezzatti AO, Hernandez A, Ponce J, Álvarez M, et al. A sentiment analysis model to analyze students reviews of teacher performance using support vector machines. International Symposium on Distributed Computing and Artificial Intelligence: Springer; 2017. p. 157–164. Esparza GG, de Luna A, Zezzatti AO, Hernandez A, Ponce J, Álvarez M, et al. A sentiment analysis model to analyze students reviews of teacher performance using support vector machines. International Symposium on Distributed Computing and Artificial Intelligence: Springer; 2017. p. 157–164.
130.
Zurück zum Zitat Chauhan GS, Agrawal P, Meena YK. Aspect-based sentiment analysis of students’ feedback to improve teaching–learning process. Information and Communication Technology for Intelligent Systems: Springer; 2019. p. 259–66. Chauhan GS, Agrawal P, Meena YK. Aspect-based sentiment analysis of students’ feedback to improve teaching–learning process. Information and Communication Technology for Intelligent Systems: Springer; 2019. p. 259–66.
131.
Zurück zum Zitat de Paula Santos F, Lechugo CP, Silveira-Mackenzie IF. “Speak well” or “complain” about your teacher: a contribution of education data mining in the evaluation of teaching practices. 2016 International Symposium on Computers in Education (SIIE): IEEE; 2016. p. 1–4. de Paula Santos F, Lechugo CP, Silveira-Mackenzie IF. “Speak well” or “complain” about your teacher: a contribution of education data mining in the evaluation of teaching practices. 2016 International Symposium on Computers in Education (SIIE): IEEE; 2016. p. 1–4.
132.
Zurück zum Zitat Maqsood H, Mehmood I, Maqsood M, Yasir M, Afzal S, Aadil F, et al. A local and global event sentiment based efficient stock exchange forecasting using deep learning. Int J Inf Manag. 2020;50:432–51. Maqsood H, Mehmood I, Maqsood M, Yasir M, Afzal S, Aadil F, et al. A local and global event sentiment based efficient stock exchange forecasting using deep learning. Int J Inf Manag. 2020;50:432–51.
133.
Zurück zum Zitat García-Díaz V, Espada JP, Crespo RG, G-Bustelo BCP, Lovelle JMC. An approach to improve the accuracy of probabilistic classifiers for decision support systems in sentiment analysis. Appl Soft Comput. 2018;67:822–33. García-Díaz V, Espada JP, Crespo RG, G-Bustelo BCP, Lovelle JMC. An approach to improve the accuracy of probabilistic classifiers for decision support systems in sentiment analysis. Appl Soft Comput. 2018;67:822–33.
134.
Zurück zum Zitat Ma R, Wang K, Qiu T, Sangaiah AK, Lin D, Liaqat HB. Feature-based compositing memory networks for aspect-based sentiment classification in social internet of things. Futur Gener Comput Syst. 2019;92:879–88. Ma R, Wang K, Qiu T, Sangaiah AK, Lin D, Liaqat HB. Feature-based compositing memory networks for aspect-based sentiment classification in social internet of things. Futur Gener Comput Syst. 2019;92:879–88.
135.
Zurück zum Zitat Jabreel M, Moreno A. A deep learning-based approach for multi-label emotion classification in tweets. Appl Sci. 2019;9(6):1123–39. Jabreel M, Moreno A. A deep learning-based approach for multi-label emotion classification in tweets. Appl Sci. 2019;9(6):1123–39.
136.
Zurück zum Zitat Poria S, Majumder N, Hazarika D, Cambria E, Gelbukh A, Hussain A. Multimodal sentiment analysis: addressing key issues and setting up the baselines. IEEE Intell Syst. 2018;33(6):17–25. Poria S, Majumder N, Hazarika D, Cambria E, Gelbukh A, Hussain A. Multimodal sentiment analysis: addressing key issues and setting up the baselines. IEEE Intell Syst. 2018;33(6):17–25.
137.
Zurück zum Zitat Sun M, Konstantelos I, Strbac G. A deep learning-based feature extraction framework for system security assessment. IEEE Trans Smart Grid. 2018;10(5):5007–20. Sun M, Konstantelos I, Strbac G. A deep learning-based feature extraction framework for system security assessment. IEEE Trans Smart Grid. 2018;10(5):5007–20.
138.
Zurück zum Zitat Valdivia A, Martínez-Cámara E, Chaturvedi I, Luzón MV, Cambria E, Ong YS, et al. What do people think about this monument? Understanding negative reviews via deep learning, clustering and descriptive rules. J Ambient Intell Humaniz Comput. 2020;11(1):39–52. Valdivia A, Martínez-Cámara E, Chaturvedi I, Luzón MV, Cambria E, Ong YS, et al. What do people think about this monument? Understanding negative reviews via deep learning, clustering and descriptive rules. J Ambient Intell Humaniz Comput. 2020;11(1):39–52.
139.
Zurück zum Zitat Ma Y, Peng H, Cambria E. Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM. Thirty-second AAAI Conference on Artificial Intelligence; 2018. p. 5876–5883. Ma Y, Peng H, Cambria E. Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM. Thirty-second AAAI Conference on Artificial Intelligence; 2018. p. 5876–5883.
140.
Zurück zum Zitat Majumder N, Poria S, Hazarika D, Mihalcea R, Gelbukh A, Cambria E. Dialoguernn: an attentive RNN for emotion detection in conversations. Proc AAAI Conf Artif Intell. 2019;33:6818–25. Majumder N, Poria S, Hazarika D, Mihalcea R, Gelbukh A, Cambria E. Dialoguernn: an attentive RNN for emotion detection in conversations. Proc AAAI Conf Artif Intell. 2019;33:6818–25.
141.
Zurück zum Zitat Zhao W, Peng H, Eger S, Cambria E, Yang M. Towards scalable and reliable capsule networks for challenging NLP applications. Proceedings of the 57th annual meeting of the Association for Computational Linguistics; 2019. p. 1549–1559. Zhao W, Peng H, Eger S, Cambria E, Yang M. Towards scalable and reliable capsule networks for challenging NLP applications. Proceedings of the 57th annual meeting of the Association for Computational Linguistics; 2019. p. 1549–1559.
142.
Zurück zum Zitat Peng H, Ma Y, Li Y, Cambria E. Learning multi-grained aspect target sequence for Chinese sentiment analysis. Knowl-Based Syst. 2018;148:167–76. Peng H, Ma Y, Li Y, Cambria E. Learning multi-grained aspect target sequence for Chinese sentiment analysis. Knowl-Based Syst. 2018;148:167–76.
143.
Zurück zum Zitat Majumder N, Poria S, Gelbukh A, Akhtar MS, Cambria E, Ekbal A. IARM: inter-aspect relation modeling with memory networks in aspect-based sentiment analysis. Proceedings of the 2018 conference on Empirical Methods in Natural Language Processing; 2018. p. 3402–3411. Majumder N, Poria S, Gelbukh A, Akhtar MS, Cambria E, Ekbal A. IARM: inter-aspect relation modeling with memory networks in aspect-based sentiment analysis. Proceedings of the 2018 conference on Empirical Methods in Natural Language Processing; 2018. p. 3402–3411.
144.
Zurück zum Zitat Al-Smadi M, Al-Ayyoub M, Jararweh Y, Qawasmeh O. Enhancing aspect-based sentiment analysis of Arabic hotels’ reviews using morphological, syntactic and semantic features. Inf Process Manag. 2019;56(2):308–19. Al-Smadi M, Al-Ayyoub M, Jararweh Y, Qawasmeh O. Enhancing aspect-based sentiment analysis of Arabic hotels’ reviews using morphological, syntactic and semantic features. Inf Process Manag. 2019;56(2):308–19.
Metadaten
Titel
A Structural Topic Modeling-Based Bibliometric Study of Sentiment Analysis Literature
verfasst von
Xieling Chen
Haoran Xie
Publikationsdatum
31.07.2020
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 6/2020
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-020-09745-1

Weitere Artikel der Ausgabe 6/2020

Cognitive Computation 6/2020 Zur Ausgabe

Premium Partner