Skip to main content
Erschienen in: Production Engineering 4/2022

24.11.2021 | Production Management

A structured methodology to support human–robot collaboration configuration choice

verfasst von: Riccardo Gervasi, Luca Mastrogiacomo, Domenico Augusto Maisano, Dario Antonelli, Fiorenzo Franceschini

Erschienen in: Production Engineering | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Human–robot collaboration (HRC) is a gradually consolidating paradigm of the modern industry which combines human and robot skills to make production more flexible. Since the effective implementation of HRC requires a careful analysis of different aspects, related both to robots and humans, there is a real need for a structured methodology to support it. A previous work proposed a multi-dimensional framework to analyze several HRC aspects of a collaborative task. However, identifying the configuration that better exploits the HRC potential is not always trivial, especially among multiple alternative solutions. In addition, the priority levels (weights) assigned to the individual sub-dimensions of the framework, which identify specific design strategies, do not appear explicitly. The goal of this paper is to address these gaps, expanding the previous methodology and proposing the introduction of a multiple-criteria decision analysis (MCDA) method (i.e., ELECTRE-II). The inclusion of a MCDA method allows designers to: (i) express importance weights for each sub-dimension of the framework, and (ii) generate a preference ranking through a structured comparison of alternative HRC configurations. The description is supported by a real industrial application in the automotive field, in which four alternative HRC configurations are analyzed by a team of experts providing a holistic analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The more compact notation “a1, a2, …” will be adopted to indicate the corresponding HRC configurations “HRC1, HRC2, …” described in Sect. 3.
 
Literatur
2.
Zurück zum Zitat Pine BJ (1993) Mass customization. Harvard Business School Press, Boston Pine BJ (1993) Mass customization. Harvard Business School Press, Boston
6.
Zurück zum Zitat ISO/TS 15066 (2016) Robots and robotic devices—collaborative robots. International Organization for Standardization, Geneva ISO/TS 15066 (2016) Robots and robotic devices—collaborative robots. International Organization for Standardization, Geneva
15.
Zurück zum Zitat Gervasi R, Mastrogiacomo L, Franceschini F (2019) Towards the definition of a Human-Robot collaboration scale. In: Bini M, Amenta P, D’Ambra A, Camminatiello I (eds) Statistical methods for service quality evaluation—book of short papers of IES 2019, Rome, Italy, July 4–5, Cuzzolin, Italy, pp 75–80 Gervasi R, Mastrogiacomo L, Franceschini F (2019) Towards the definition of a Human-Robot collaboration scale. In: Bini M, Amenta P, D’Ambra A, Camminatiello I (eds) Statistical methods for service quality evaluation—book of short papers of IES 2019, Rome, Italy, July 4–5, Cuzzolin, Italy, pp 75–80
16.
Zurück zum Zitat Goodrich MA, Schultz AC (2007) Human-robot interaction: a survey. Now, Boston Goodrich MA, Schultz AC (2007) Human-robot interaction: a survey. Now, Boston
18.
Zurück zum Zitat Bröhl C, Nelles J, Brandl C, Mertens A, Schlick CM (2016) TAM reloaded: a technology acceptance model for human-robot cooperation in production systems. In: Stephanidis C (ed) HCI international 2016—posters’ extended abstracts. Springer International Publishing, Cham, pp 97–103CrossRef Bröhl C, Nelles J, Brandl C, Mertens A, Schlick CM (2016) TAM reloaded: a technology acceptance model for human-robot cooperation in production systems. In: Stephanidis C (ed) HCI international 2016—posters’ extended abstracts. Springer International Publishing, Cham, pp 97–103CrossRef
19.
Zurück zum Zitat Gualtieri L, Palomba I, Merati FA, Rauch E, Vidoni R (2020) Design of human-centered collaborative assembly workstations for the improvement of operators’ physical ergonomics and production efficiency: a case study. Sustainability 12:3606. https://doi.org/10.3390/su12093606CrossRef Gualtieri L, Palomba I, Merati FA, Rauch E, Vidoni R (2020) Design of human-centered collaborative assembly workstations for the improvement of operators’ physical ergonomics and production efficiency: a case study. Sustainability 12:3606. https://​doi.​org/​10.​3390/​su12093606CrossRef
22.
Zurück zum Zitat Gervasi R, Digiaro F, Mastrogiacomo L, Maisano D, Franceschini F (2020) Comparing quality profiles in human-robot collaboration: empirical evidence in the automotive sector. In: Proceedings book of the 4th international conference on quality engineering and management. University of Minho, Portugal, pp 89–114 Gervasi R, Digiaro F, Mastrogiacomo L, Maisano D, Franceschini F (2020) Comparing quality profiles in human-robot collaboration: empirical evidence in the automotive sector. In: Proceedings book of the 4th international conference on quality engineering and management. University of Minho, Portugal, pp 89–114
23.
Zurück zum Zitat Colgate JE, Wannasuphoprasit W, Peshkin MA (1996) Cobots: robots for collaboration with human operators. In: Proceedings of the 1996 ASME international mechanical engineering congress and exposition, pp 433–439 Colgate JE, Wannasuphoprasit W, Peshkin MA (1996) Cobots: robots for collaboration with human operators. In: Proceedings of the 1996 ASME international mechanical engineering congress and exposition, pp 433–439
26.
Zurück zum Zitat Tan JTC, Duan F, Zhang Y, Watanabe K, Kato R, Arai T (2009) Human-robot collaboration in cellular manufacturing: Design and development. In: 2009 IEEE/RSJ international conference on intelligent robots and systems. IEEE, St. Louis, pp 29–34 Tan JTC, Duan F, Zhang Y, Watanabe K, Kato R, Arai T (2009) Human-robot collaboration in cellular manufacturing: Design and development. In: 2009 IEEE/RSJ international conference on intelligent robots and systems. IEEE, St. Louis, pp 29–34
28.
Zurück zum Zitat Nelles J, Kohns S, Spies J, Brandl C, Mertens A, Schlick CM (2016) Analysis of stress and strain in head based control of collaborative robots—a literature review. In: Goonetilleke R, Karwowski W (eds) Advances in physical ergonomics and human factors. Springer International Publishing, Cham, pp 727–737CrossRef Nelles J, Kohns S, Spies J, Brandl C, Mertens A, Schlick CM (2016) Analysis of stress and strain in head based control of collaborative robots—a literature review. In: Goonetilleke R, Karwowski W (eds) Advances in physical ergonomics and human factors. Springer International Publishing, Cham, pp 727–737CrossRef
30.
Zurück zum Zitat Sauppé A, Mutlu B (2015) The social impact of a robot co-worker in industrial settings. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems—CHI ’15. ACM Press, Seoul, pp 3613–3622 Sauppé A, Mutlu B (2015) The social impact of a robot co-worker in industrial settings. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems—CHI ’15. ACM Press, Seoul, pp 3613–3622
32.
Zurück zum Zitat Rajendran V, Carreno-Medrano P, Fisher W, Werner A, Kulić D (2020) A framework for human-robot interaction user studies. In: 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 6215–6222 Rajendran V, Carreno-Medrano P, Fisher W, Werner A, Kulić D (2020) A framework for human-robot interaction user studies. In: 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 6215–6222
35.
Zurück zum Zitat ISO 26800 (2011) Ergonomics—general approach, principles and concepts. International Organization for Standardization, Geneva ISO 26800 (2011) Ergonomics—general approach, principles and concepts. International Organization for Standardization, Geneva
36.
Zurück zum Zitat BS 8611 (2016) Robots and robotic devices. Guide to the ethical design and application of robots and robotic systems. British Standards Institution, London BS 8611 (2016) Robots and robotic devices. Guide to the ethical design and application of robots and robotic systems. British Standards Institution, London
37.
Zurück zum Zitat NIST (2018) Framework for improving critical infrastructure cybersecurity. National Institute of Standards and Technology, Gaithersburg NIST (2018) Framework for improving critical infrastructure cybersecurity. National Institute of Standards and Technology, Gaithersburg
38.
Zurück zum Zitat Krüger M, Wiebel CB, Wersing H (2017) From tools towards cooperative assistants. In: Proceedings of the 5th international conference on human agent interaction—HAI ’17. ACM Press, Bielefeld, pp 287–294 Krüger M, Wiebel CB, Wersing H (2017) From tools towards cooperative assistants. In: Proceedings of the 5th international conference on human agent interaction—HAI ’17. ACM Press, Bielefeld, pp 287–294
39.
Zurück zum Zitat ISO 10218-2 (2011) Robots and robotic devices—safety requirements for industrial robots—part 2: robot systems and integration. International Organization for Standardization, Geneva ISO 10218-2 (2011) Robots and robotic devices—safety requirements for industrial robots—part 2: robot systems and integration. International Organization for Standardization, Geneva
40.
Zurück zum Zitat ISO/TR 14121-2 (2012) Safety of machinery—risk assessment—part 2: practical guidance and examples of methods. International Organization for Standardization, Geneva ISO/TR 14121-2 (2012) Safety of machinery—risk assessment—part 2: practical guidance and examples of methods. International Organization for Standardization, Geneva
41.
Zurück zum Zitat Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Hancock PA, Meshkati N (eds) Advances in psychology. North-Holland, pp 139–183 Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Hancock PA, Meshkati N (eds) Advances in psychology. North-Holland, pp 139–183
42.
Zurück zum Zitat Yanco HA, Drury J (2004) Classifying human-robot interaction: an updated taxonomy. In: 2004 IEEE international conference on systems, man and cybernetics (IEEE Cat. No.04CH37583), vol 3, pp 2841–2846 Yanco HA, Drury J (2004) Classifying human-robot interaction: an updated taxonomy. In: 2004 IEEE international conference on systems, man and cybernetics (IEEE Cat. No.04CH37583), vol 3, pp 2841–2846
45.
Zurück zum Zitat Brooke J (1996) SUS—a quick and dirty usability scale. In: Jordan P, Thomas B, Weerdmeester B, McClelland I (eds) Usability evaluation in industry. CRC Press, London, pp 189–194 Brooke J (1996) SUS—a quick and dirty usability scale. In: Jordan P, Thomas B, Weerdmeester B, McClelland I (eds) Usability evaluation in industry. CRC Press, London, pp 189–194
48.
Zurück zum Zitat Figueira J, Mousseau V, Roy B (2005) Electre methods. In: Figueira J, Greco S, Ehrogott M (eds) Multiple criteria decision analysis: state of the art surveys. Springer, New York, pp 133–153CrossRef Figueira J, Mousseau V, Roy B (2005) Electre methods. In: Figueira J, Greco S, Ehrogott M (eds) Multiple criteria decision analysis: state of the art surveys. Springer, New York, pp 133–153CrossRef
49.
Zurück zum Zitat Maystre LY, Pictet J, Simos J (1994) Méthodes multicritères ELECTRE: description, conseils pratiques et cas d’application à la gestion environnementale. PPUR presses polytechniques Maystre LY, Pictet J, Simos J (1994) Méthodes multicritères ELECTRE: description, conseils pratiques et cas d’application à la gestion environnementale. PPUR presses polytechniques
53.
Zurück zum Zitat Ostanello A (1985) Outranking methods. In: Fandel G, Spronk J (eds) Multiple criteria decision methods and applications: selected readings of the first international summer school Acireale, Sicily, September 1983. Springer, Berlin, pp 41–60CrossRef Ostanello A (1985) Outranking methods. In: Fandel G, Spronk J (eds) Multiple criteria decision methods and applications: selected readings of the first international summer school Acireale, Sicily, September 1983. Springer, Berlin, pp 41–60CrossRef
54.
Metadaten
Titel
A structured methodology to support human–robot collaboration configuration choice
verfasst von
Riccardo Gervasi
Luca Mastrogiacomo
Domenico Augusto Maisano
Dario Antonelli
Fiorenzo Franceschini
Publikationsdatum
24.11.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Production Engineering / Ausgabe 4/2022
Print ISSN: 0944-6524
Elektronische ISSN: 1863-7353
DOI
https://doi.org/10.1007/s11740-021-01088-6

Weitere Artikel der Ausgabe 4/2022

Production Engineering 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.