Skip to main content
Erschienen in: Metal Science and Heat Treatment 9-10/2015

01.01.2015

A Study of the Physical Properties of Strontium Titanate Ceramics in the Temperature Range of 8 – 295 K by the Method of Piezoresponse Force Microscopy

verfasst von: V. N. Andreeva, A. V. Filimonov, A. I. Rudskoy, I. Bdikin

Erschienen in: Metal Science and Heat Treatment | Ausgabe 9-10/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ferroelectric properties of the surface of SrTiO3 strontium titanate ceramics are studied by the method of piezoresponse force microscopy. It is shown that polar nanoareas exist in the surface layer of the SrTiO3 ceramics in the temperature range of 8 – 295 K. The results of thermodynamic computations are presented, which reflect the important role of crystal lattice deformations and oxygen vacancies in the low-temperature evolution of the piezoelectric response of the near-surface layers of the SrTiO3 ceramics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The authors are grateful to Professor N. A. Pertsev for the discussion and consultations.
 
Literatur
1.
Zurück zum Zitat O. E. Kvyatkovskii, “Quantum effects in virtual and low-temperature ferroelectric materials,” Fiz. Tverd. Tela, 43(8), 1345 – 1362 (2001). O. E. Kvyatkovskii, “Quantum effects in virtual and low-temperature ferroelectric materials,” Fiz. Tverd. Tela, 43(8), 1345 – 1362 (2001).
2.
Zurück zum Zitat G. Sorge, E. Hegenbarth, and G. Schmidt, “Mechanical relaxation and nonlinearity in strontium titanate single crystal,” Phys. Stat. Sol. (b), 37(2), 599 – 603 (1970).CrossRef G. Sorge, E. Hegenbarth, and G. Schmidt, “Mechanical relaxation and nonlinearity in strontium titanate single crystal,” Phys. Stat. Sol. (b), 37(2), 599 – 603 (1970).CrossRef
3.
Zurück zum Zitat K. A. Muller, W. Berlinger, and E. Tosatti, “Indication for a novel phase in the quantum paraelectric regime of SrTiO3,” Z. Phys. B. Condensed Matter, 84, 277 – 283 (1991).CrossRef K. A. Muller, W. Berlinger, and E. Tosatti, “Indication for a novel phase in the quantum paraelectric regime of SrTiO3,” Z. Phys. B. Condensed Matter, 84, 277 – 283 (1991).CrossRef
4.
Zurück zum Zitat O.-M. Nes, K. A. Muller, T. Suzuki, and F. Fossheim, “Elastic anomalies in the quantum paraelectric regime of SrTiO3,” Europhys. Lett., 19, 397 – 403 (1992).CrossRef O.-M. Nes, K. A. Muller, T. Suzuki, and F. Fossheim, “Elastic anomalies in the quantum paraelectric regime of SrTiO3,” Europhys. Lett., 19, 397 – 403 (1992).CrossRef
5.
Zurück zum Zitat E. V. Balashova, V. V. Lemanov, R. Kunze, et al., “Ultrasonic study on the tetragonal and Muller phase in SrTiO3,” Ferroelectrics, 183, 75 – 83 (1996).CrossRef E. V. Balashova, V. V. Lemanov, R. Kunze, et al., “Ultrasonic study on the tetragonal and Muller phase in SrTiO3,” Ferroelectrics, 183, 75 – 83 (1996).CrossRef
6.
Zurück zum Zitat K. A. Muller, “Macroscopic quantum phenomena,” Ferroelectrics, 183, 11 – 24 (1996).CrossRef K. A. Muller, “Macroscopic quantum phenomena,” Ferroelectrics, 183, 11 – 24 (1996).CrossRef
7.
Zurück zum Zitat E. Curtens, “Is there an unusual condensation in quantum paraelectrics?” Ferroelectrics, 183, 25 – 38 (1996).CrossRef E. Curtens, “Is there an unusual condensation in quantum paraelectrics?” Ferroelectrics, 183, 25 – 38 (1996).CrossRef
8.
Zurück zum Zitat R. C. Neville, B. Hoeneisen, and C. A. Mead, “Permittivity of strontium titanate,” J. Appl. Phys., 43(5), 2124 – 2135 (1972).CrossRef R. C. Neville, B. Hoeneisen, and C. A. Mead, “Permittivity of strontium titanate,” J. Appl. Phys., 43(5), 2124 – 2135 (1972).CrossRef
9.
Zurück zum Zitat S. O. Lukianov, N. V. Andreeva, S. V. Vakhrushev, et al., “Surface polar nanoregions structure of potassium titanate doped with lithium obtained at cryogenic temperatures using piezoresponse force microscopy technique,” St. Petersburg State Polytech. Univ. J., Phys. Math., No. 4-2(182), 84 – 89 (2013). S. O. Lukianov, N. V. Andreeva, S. V. Vakhrushev, et al., “Surface polar nanoregions structure of potassium titanate doped with lithium obtained at cryogenic temperatures using piezoresponse force microscopy technique,” St. Petersburg State Polytech. Univ. J., Phys. Math., No. 4-2(182), 84 – 89 (2013).
10.
Zurück zum Zitat A. Kholkin, I. Bdikin, T. Ostapchuk, and J. Petzelt, “Room temperature surface piezoelectricity in SrTiO3 ceramics via piezoresponse force microscopy,” Appl. Phys. Lett., 93, 222905–1 – 222905–3 (2008).CrossRef A. Kholkin, I. Bdikin, T. Ostapchuk, and J. Petzelt, “Room temperature surface piezoelectricity in SrTiO3 ceramics via piezoresponse force microscopy,” Appl. Phys. Lett., 93, 222905–1 – 222905–3 (2008).CrossRef
11.
Zurück zum Zitat A. K. Tagantsev, “Pyro-, piezo-, flexoelectric and thermopolarization effects in ionic crystals,” Usp. Fiz. Nauk, 152, 423 – 448 (1987).CrossRef A. K. Tagantsev, “Pyro-, piezo-, flexoelectric and thermopolarization effects in ionic crystals,” Usp. Fiz. Nauk, 152, 423 – 448 (1987).CrossRef
12.
Zurück zum Zitat T. Mitsui and W. B. Westphal, “Dielectric and x-ray studies of Ca x Ba1 – x TiO3 and Ca x Sr1 – x TiO3, Phys. Rev., 124, 1354 – 1359 (1961).CrossRef T. Mitsui and W. B. Westphal, “Dielectric and x-ray studies of Ca x Ba1 – x TiO3 and Ca x Sr1 – x TiO3, Phys. Rev., 124, 1354 – 1359 (1961).CrossRef
13.
Zurück zum Zitat H. Uwe and T. Sakido, “Stress-induced ferroelectricity and soft phonon modes in SrTiO3, Phys. Rev. B, 13, 271 – 286 (1976).CrossRef H. Uwe and T. Sakido, “Stress-induced ferroelectricity and soft phonon modes in SrTiO3, Phys. Rev. B, 13, 271 – 286 (1976).CrossRef
14.
Zurück zum Zitat N. A. Pertsev, A. K. Tagantsev, and N. Setter, “Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films,” Phys. Rev. B, 61, R825 – R829 (2000).CrossRef N. A. Pertsev, A. K. Tagantsev, and N. Setter, “Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films,” Phys. Rev. B, 61, R825 – R829 (2000).CrossRef
15.
Zurück zum Zitat J. H. Haeni, P. Irvin,W. Chang, et al., “Room-temperature ferroelectricity in strained SrTiO3,” Nature (London), 430, 758 – 761 (2004).CrossRef J. H. Haeni, P. Irvin,W. Chang, et al., “Room-temperature ferroelectricity in strained SrTiO3,” Nature (London), 430, 758 – 761 (2004).CrossRef
16.
Zurück zum Zitat M. Tyunina, J. Narkilahti, M. Plekh, et al., “Evidence for strain-induced ferroelectric order in epitaxial thin-film KTaO3,” Phys. Rev. Lett., 104, 227601 – 227605 (2010).CrossRef M. Tyunina, J. Narkilahti, M. Plekh, et al., “Evidence for strain-induced ferroelectric order in epitaxial thin-film KTaO3,” Phys. Rev. Lett., 104, 227601 – 227605 (2010).CrossRef
17.
Zurück zum Zitat N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, “Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films,” Phys. Rev. Lett., 80, 1988 – 1991 (1998).CrossRef N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, “Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films,” Phys. Rev. Lett., 80, 1988 – 1991 (1998).CrossRef
18.
Zurück zum Zitat H. Thomas and K. A. Muller, “Structural phase transitions in perovskite-type crystals,” Phys. Rev. Lett., 21, 1256 – 1259 (1968).CrossRef H. Thomas and K. A. Muller, “Structural phase transitions in perovskite-type crystals,” Phys. Rev. Lett., 21, 1256 – 1259 (1968).CrossRef
19.
Zurück zum Zitat J. C. Slonczewski and H. Thomas, “Interaction of elastic strain with the structural transition of strontium titanate,” Phys. Rev. B, 1, 3599 – 3608 (1970).CrossRef J. C. Slonczewski and H. Thomas, “Interaction of elastic strain with the structural transition of strontium titanate,” Phys. Rev. B, 1, 3599 – 3608 (1970).CrossRef
20.
Zurück zum Zitat E. Heifets, R. I. Eglitis, E. A. Kotomin, et al., Ab initio modeling of surface structure for SrTiO3 perovskite crystals,” Phys. Rev. B, 64, 235417–1 – 235417–5 (2001).CrossRef E. Heifets, R. I. Eglitis, E. A. Kotomin, et al., Ab initio modeling of surface structure for SrTiO3 perovskite crystals,” Phys. Rev. B, 64, 235417–1 – 235417–5 (2001).CrossRef
21.
Zurück zum Zitat J. Petzelt, T. Ostapchuk, I. Gregora, et al., “Dielectric, infrared, and Raman response of undoped SrTiO3 ceramics: evidence of polar grain boundaries,” Phys. Rev. B, 64, 184111–1 – 184111–10 (2001).CrossRef J. Petzelt, T. Ostapchuk, I. Gregora, et al., “Dielectric, infrared, and Raman response of undoped SrTiO3 ceramics: evidence of polar grain boundaries,” Phys. Rev. B, 64, 184111–1 – 184111–10 (2001).CrossRef
22.
Zurück zum Zitat S. V. Kalinin, A. N. Morozovska, L. Q. Chen, et al., “Local polarization dynamics in ferroelectric materials,” Rep. Prog. Phys., 73, Art. 056502 (2010). S. V. Kalinin, A. N. Morozovska, L. Q. Chen, et al., “Local polarization dynamics in ferroelectric materials,” Rep. Prog. Phys., 73, Art. 056502 (2010).
23.
Zurück zum Zitat W. Gong, H. Yun, Y. B. Ning, et al., “Oxygen-deficient SrTiO3 – x , x = 0.28, 0.17, and 0.08. Crystal growth, crystal structure, magnetic and transport properties,” J. Solid State Chem., 90, 320 – 330 (1991).CrossRef W. Gong, H. Yun, Y. B. Ning, et al., “Oxygen-deficient SrTiO3 – x , x = 0.28, 0.17, and 0.08. Crystal growth, crystal structure, magnetic and transport properties,” J. Solid State Chem., 90, 320 – 330 (1991).CrossRef
24.
Zurück zum Zitat Y. S. Kim, J. Y. Jo, T. H. Kim, et al., “Observation of homogeneous domain nucleation in epitaxial Pb(Zr, Ti))3 capacitors,” Appl. Phys. Lett., 91, 132903 – 132903–3 (2007).CrossRef Y. S. Kim, J. Y. Jo, T. H. Kim, et al., “Observation of homogeneous domain nucleation in epitaxial Pb(Zr, Ti))3 capacitors,” Appl. Phys. Lett., 91, 132903 – 132903–3 (2007).CrossRef
25.
Zurück zum Zitat N. D. Browning, J. P. Buban, H. O. Moltaji, et al., “The influence of atomic structure on the formation of electrical barriers at grain boundaries in SrTiO3,” Appl. Phys. Lett., 74, 2638 – 2640 (1999).CrossRef N. D. Browning, J. P. Buban, H. O. Moltaji, et al., “The influence of atomic structure on the formation of electrical barriers at grain boundaries in SrTiO3,” Appl. Phys. Lett., 74, 2638 – 2640 (1999).CrossRef
26.
Zurück zum Zitat N. V. Andreeva, M. Tyunina, A. V. Filimonov, et al., “Low-temperature evolution of local polarization properties of PbZr0.65Ti0.35O3 thin films probed by piezoresponse force microscopy,” Appl. Phys. Lett., 104, 112905 (2014).CrossRef N. V. Andreeva, M. Tyunina, A. V. Filimonov, et al., “Low-temperature evolution of local polarization properties of PbZr0.65Ti0.35O3 thin films probed by piezoresponse force microscopy,” Appl. Phys. Lett., 104, 112905 (2014).CrossRef
27.
Zurück zum Zitat A. K. Tagantsev, K. Vaideeswaran, S. B. Vakhrushev, et al.,“The origin of antiferroelectricity in PbZrO3,” Nature Communic., 4, Art. 3229 (2013). A. K. Tagantsev, K. Vaideeswaran, S. B. Vakhrushev, et al.,“The origin of antiferroelectricity in PbZrO3,” Nature Communic., 4, Art. 3229 (2013).
Metadaten
Titel
A Study of the Physical Properties of Strontium Titanate Ceramics in the Temperature Range of 8 – 295 K by the Method of Piezoresponse Force Microscopy
verfasst von
V. N. Andreeva
A. V. Filimonov
A. I. Rudskoy
I. Bdikin
Publikationsdatum
01.01.2015
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 9-10/2015
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-015-9800-y

Weitere Artikel der Ausgabe 9-10/2015

Metal Science and Heat Treatment 9-10/2015 Zur Ausgabe

III INTERNATIONAL SCIENTIFIC AND ENGINEERING CONFERENCE “NANOTECHNOLOGIES OF FUNCTIONALMATERIALS”

Additive Technologies Based on Composite Powder Nanomaterials

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.