Skip to main content

2021 | OriginalPaper | Buchkapitel

A Study on Aerodynamic Interference for Truss Braced Wing Configuration

verfasst von : Lizhen Liu, Xiongqing Yu

Erschienen in: Proceedings of the International Conference on Aerospace System Science and Engineering 2020

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Truss Braced Wing (TBW) is one of the most promising configurations for future single-aisle commercial aircraft. The additional strut and jury in TBW endow the structure with better stiffness and strength, which enables a wing with larger aspect-ratio, thinner thickness and smaller swept angle, and even equipped with laminar flow airfoil. Theoretically, TBW configuration has the advantage of higher lift-to-drag ratio. However, one of potential problems for TBW is that severe disturbance may exist at the junction of truss and wing, which will reduce the aerodynamic benefit of TBW. To deal with this issue, this paper investigates influence of truss geometry on aerodynamic characteristics by numerical simulations of CFD. The Reynolds-averaged Navier–Stokes (RANS) method with the S-A turbulence model is used to compute the aerodynamic force and observe flow phenomenon of TBW in flight speed of Mach 0.73. The simulation results show that the geometric parameters that have large impacts on the cross section shape around the junction tend to have greater influences on aerodynamic characteristics (The Cross Section in this paper represents the cross section of air flow tunnel between the wing and truss). To analyze the impact of cross section geometry at the junction on the interference drag, we introduce a specific term, namely ‘flow section compression ratio’ that is the decreased rate of the cross section area from the entrance to the throat. The analysis indicates that the transonic disturbance will be considerable weaken when the ‘flow section compression ratio’ around the junction is under 16%, and the drag due to transonic disturbance accounts for only about 25% of the total interference drag. In order to further decrease the interference drag at the junction, we also investigate influences of the cross section geometry and airfoil thickness at the junction on the profile drag. The results from this paper can be helpful for TBW configuration design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xu DF (2010) US’ N+3-generation airliner program into phase 1. Int Aviat. (6):49–51. Chinese Xu DF (2010) US’ N+3-generation airliner program into phase 1. Int Aviat. (6):49–51. Chinese
2.
Zurück zum Zitat Zeng JF, Qu JS (2012) EU aviation carbon tax and its international influences. Clim Change Res 8(4):292–296. Chinese Zeng JF, Qu JS (2012) EU aviation carbon tax and its international influences. Clim Change Res 8(4):292–296. Chinese
3.
Zurück zum Zitat Lu ZF (2014) ICAO-based aviation carbon emission calculation and low-carbon countermeasures. Resour Economization Environ Prot (9):129–130. Chinese Lu ZF (2014) ICAO-based aviation carbon emission calculation and low-carbon countermeasures. Resour Economization Environ Prot (9):129–130. Chinese
4.
Zurück zum Zitat Hardman AF (2014) Measures for international aviation to respond to global carbon emissions. China Civ Aviat (6):27–28. Chinese Hardman AF (2014) Measures for international aviation to respond to global carbon emissions. China Civ Aviat (6):27–28. Chinese
5.
Zurück zum Zitat Xu DF (2015) Truss-braced wing shows promise. Int Aviat (2), 79–79. Chinese Xu DF (2015) Truss-braced wing shows promise. Int Aviat (2), 79–79. Chinese
6.
Zurück zum Zitat Bradley KF, Droney KS (2012) Subsonic ultra green aircraft research phase II. NASA/CR-2012-217556 Bradley KF, Droney KS (2012) Subsonic ultra green aircraft research phase II. NASA/CR-2012-217556
7.
Zurück zum Zitat Zhu ZF (2009) Multi-disciplinary optimization of strut-braced wing transonic transport. Acta Aeronautica et Astronautica Sinica 30(1):1–11. Chinese Zhu ZF (2009) Multi-disciplinary optimization of strut-braced wing transonic transport. Acta Aeronautica et Astronautica Sinica 30(1):1–11. Chinese
8.
Zurück zum Zitat Gern FF, Ko AS (2000) Transport weight reduction through MDO: the strut-braced wing transonic transport. In: 35th AIAA fluid dynamics conference and exhibit Gern FF, Ko AS (2000) Transport weight reduction through MDO: the strut-braced wing transonic transport. In: 35th AIAA fluid dynamics conference and exhibit
9.
Zurück zum Zitat Wang YF (2016) The adventure of truss-braced wing. World Flight (6):54–57. Chinese Wang YF (2016) The adventure of truss-braced wing. World Flight (6):54–57. Chinese
10.
Zurück zum Zitat Moerland EF, Pfeiffer S, Daniel T (2017) On the design of a strut-braced wing configuration in a collaborative design environment. In: 17th AIAA aviation technology, integration, and operations conference Moerland EF, Pfeiffer S, Daniel T (2017) On the design of a strut-braced wing configuration in a collaborative design environment. In: 17th AIAA aviation technology, integration, and operations conference
11.
Zurück zum Zitat Wang GF, Zeng JS, Lee JT (2015) Preliminary design of a truss-braced natural-laminar-flow composite wing via aeroelastic tailoring. ASD J (3):1–17 Wang GF, Zeng JS, Lee JT (2015) Preliminary design of a truss-braced natural-laminar-flow composite wing via aeroelastic tailoring. ASD J (3):1–17
12.
Zurück zum Zitat Xing YF, Yu XS (2018) The wing mass estimation for commercial aircraft with truss-braced wing configuration. Mach Des Manuf Eng (2):83–86. Chinese Xing YF, Yu XS (2018) The wing mass estimation for commercial aircraft with truss-braced wing configuration. Mach Des Manuf Eng (2):83–86. Chinese
13.
Zurück zum Zitat Xing YF (2018) Integrated analysis and optimization in conceptual design of airliners with truss braced wing configuration. Doctor, Nanjing University of Aeronautic and Astronautic. Chinese Xing YF (2018) Integrated analysis and optimization in conceptual design of airliners with truss braced wing configuration. Doctor, Nanjing University of Aeronautic and Astronautic. Chinese
14.
Zurück zum Zitat Zhang SF, Ji BS, Bakar AT (2012) Multidisciplinary evaluation of truss-braced wing for future green aircraft. In: 28th international congress of the aeronautical sciences, Bonn, Germany Zhang SF, Ji BS, Bakar AT (2012) Multidisciplinary evaluation of truss-braced wing for future green aircraft. In: 28th international congress of the aeronautical sciences, Bonn, Germany
15.
Zurück zum Zitat Locatelli DF, Riggins KS, Kapania KT (2015) A physics-based methodology for cantilever and strut-braced wing weight estimation. In: AIAA aerospace sciences meeting Locatelli DF, Riggins KS, Kapania KT (2015) A physics-based methodology for cantilever and strut-braced wing weight estimation. In: AIAA aerospace sciences meeting
16.
Zurück zum Zitat Ko AF, Mason WS, Grossman BT (2003) Transonic aerodynamics of a wing/pylon/strut juncture. In: 21st AIAA applied aerodynamics conference, AIAA-2003-4062 Ko AF, Mason WS, Grossman BT (2003) Transonic aerodynamics of a wing/pylon/strut juncture. In: 21st AIAA applied aerodynamics conference, AIAA-2003-4062
17.
Zurück zum Zitat Ivaldi DF, Secco NRS, Chen ST (2015) Aerodynamic shape optimization of a truss-braced-wing aircraft. In: 16th AIAA/ISSMO multidisciplinary analysis and optimization conference Ivaldi DF, Secco NRS, Chen ST (2015) Aerodynamic shape optimization of a truss-braced-wing aircraft. In: 16th AIAA/ISSMO multidisciplinary analysis and optimization conference
18.
Zurück zum Zitat Ney RF (2019) RANS-based aerodynamic shape optimization of a strut-braced wing with overset meshes. J Aircr 56(1):217–227 Ney RF (2019) RANS-based aerodynamic shape optimization of a strut-braced wing with overset meshes. J Aircr 56(1):217–227
19.
Zurück zum Zitat Knight KF (2011) Assessment of RANS turbulence models for strut-wing junctions. Master, Virginia Polytechnic Institute and State University Knight KF (2011) Assessment of RANS turbulence models for strut-wing junctions. Master, Virginia Polytechnic Institute and State University
20.
Zurück zum Zitat Tetrault AF, Schetz JS, Grossman BT (2013) Numerical prediction of the interference drag of a streamlined strut intersecting a surface in transonic flow. In: Aerospace sciences meeting & exhibit Tetrault AF, Schetz JS, Grossman BT (2013) Numerical prediction of the interference drag of a streamlined strut intersecting a surface in transonic flow. In: Aerospace sciences meeting & exhibit
21.
Zurück zum Zitat Duggirala KF, Roy JS, Schetz AT (2011) Analysis of interference drag for strut-strut interaction in transonic flow. AIAA J 49(3):449–462 Duggirala KF, Roy JS, Schetz AT (2011) Analysis of interference drag for strut-strut interaction in transonic flow. AIAA J 49(3):449–462
Metadaten
Titel
A Study on Aerodynamic Interference for Truss Braced Wing Configuration
verfasst von
Lizhen Liu
Xiongqing Yu
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-6060-0_10

    Premium Partner