1 Introduction
Data Quality Issue | Description |
---|---|
Amount of data | Difficulty in collecting sufficiently large amounts of data. |
Label inconsistencies | Labor″=intensive task that is oftentimes ambiguous and usually requires multiple domain″=experts |
Data imbalance | Defective parts tend to be significantly underrepresented compared to non-defective ones |
Changing lightning conditions | Contrasts and brightness changes across different work shifts |
Exposure issues | Reflections and shadows cast by complex components |
Sensor failure | Image failures or high noise-levels due to sensor degradation amplified by harsh environments |
Changing object poses | Especially in mass production often different orientation of components |
Changing appearances | Changes in the appearance of a product from time to time can make the data previously collected unusable. |
2 Related Work
Scientific Impact
3 Approach
3.1 Binary Defect Detection Problem Definition
3.2 Presentation of the Datasets
3.3 Experiment Procedure
Data Augmentation Pipelines
TIG5083 | AITEX | MagTile |
---|---|---|
1. Gaussian Noise | 1. Gaussian Noise | 1. Salt & Pepper Noise |
2. Transpose Image | 2. Transpose Image | 2. Transpose Image |
3. Flip Image | 3. Flip Image | 3. Flip Image |
4. Perspective Transformation | 4. Random Perspective | 4. Random Perspective |
5. Add Brightness | 5. Color Jitter | 5. Color Jitter |
6. Affine Transformation | 6. Moving Least Squares (MLS) | 6. MLS [33] |
7. Random Erase [12] | ||
8. Random Rotate |
Nr. | Train & Validation augmentations | Test augmentations |
---|---|---|
1 | Random Perspective, Flip Image, Color Jitter | Random Rotate, Transpose Image |
2 | Flip Image, Random Perspective | Transpose Image, Random Erase |
3 | Gaussian Noise, Color Jitter, Random Perspective, Random Rotate, Flip Image | Random Erase, MLS |
4 | Random Erase, MLS, Gaussian Noise | Color Jitter, Random Perspective |
5 | Random Rotate, MLS, Gaussian Noise | Transpose Image, Flip Image |
6 | Random Perspective, Random Rotate | Gaussian Noise, MLS |
7 | Random Erase, AddNoise, Color Jitter | Random Rotate, Random Perspective |
8 | Random Rotate, Random Erase, Flip Image, Color Jitter | Random Perspective, Gaussian Noise |
9 | Color Jitter, Random Rotate, Gaussian Noise | MLS, Random Perspective |
10 | Random Perspective | Random Rotate, MLS |
Domain Shift Measures
Evaluation Metrics
4 Results
4.1 Training and Implementation
4.2 Results for the AITEX Dataset
Train/Test | Train/Aug_test | Train/Hold_out |
---|---|---|
0.0764 ± 0.0831 | 0.0808 ± 0.0804 | 0.1841 ± 0.1981 |
Pipeline | Inception v3 | ResNet-50 | Mean | ||||
---|---|---|---|---|---|---|---|
Last layer | 2nd Last layer | 3rd Last layer | Last layer | 2nd Last layer | 3rd Last layer | ||
1 | −0.996 | −0.996 | −0.998 | −0.999 | −0.999 | −0.999 | −0.998 ± 0.002 |
2 | −0.727 | −0.734 | −0.505 | −0.941 | −0.940 | −0.979 | −0.804 ± 0.167 |
3 | −0.989 | −0.990 | −0.971 | −0.960 | −0.967 | −0.986 | −0.977 ± 0.012 |
4 | −0.970 | −0.972 | −0.995 | −0.352 | −0.317 | −0.530 | −0.689 ± 0.297 |
5 | −0.916 | −0.916 | −0.986 | −0.900 | −0.905 | −0.979 | −0.934 ± 0.035 |
6 | −1.000 | −1.000 | −1.000 | −0.917 | −0.931 | −0.996 | −0.974 ± 0.036 |
7 | −0.999 | −0.996 | −0.988 | −0.935 | −0.946 | −0.826 | −0.948 ± 0.060 |
8 | −0.999 | −0.998 | −1.000 | −0.955 | −0.916 | −0.974 | −0.974 ± 0.0307 |
9 | −0.952 | −0.955 | −1.000 | −0.341 | 0.121 | −0.785 | −0.652 ± 0.411 |
10 | −0.994 | −0.994 | −0.991 | −0.989 | −0.987 | −0.994 | −0.991 ± 0.003 |
−0.954 ± 0.084 | −0.955 ± 0.082 | −0.943 ± 0.154 | −0.829 ± 0.256 | −0.779 ± 0.375 | −0.905 ± 0.152 |
4.3 Results of the Ablation Study
5 Conclusion
6 Appendix
6.1 Dataset Illustrations
6.2 Domain Shift Calculations
Pipeline | Averagepool layer ResNet-50(Distance) | Test results on ResNet-50 | ||||
---|---|---|---|---|---|---|
Train/Test | Train/Aug_test | Train/Hold_out | Test | Aug_test | Hold_out | |
1 | 0.0314 | 0.04008 | 0.13468 | 0.93218 | 0.91231 | 0.36298 |
2 | 0.30067 | 0.29725 | 0.72971 | 0.94262 | 0.81365 | 0.56211 |
3 | 0.05871 | 0.02578 | 0.14406 | 0.93388 | 0.92921 | 0.56211 |
4 | 0.01909 | 0.09311 | 0.0724 | 0.95699 | 0.90933 | 0.56211 |
5 | 0.07192 | 0.03547 | 0.16015 | 0.95217 | 0.92163 | 0.77694 |
6 | 0.09642 | 0.05205 | 0.16251 | 0.92431 | 0.92431 | 0.36298 |
7 | 0.04293 | 0.09987 | 0.16797 | 0.94673 | 0.87684 | 0.36298 |
8 | 0.02218 | 0.02751 | 0.03917 | 0.92921 | 0.92262 | 0.36298 |
9 | 0.03592 | 0.06176 | 0.0556 | 0.94262 | 0.92431 | 0.6417 |
10 | 0.0843 | 0.07488 | 0.17482 | 0.94046 | 0.89822 | 0.36298 |
6.3 Results
6.3.1 MagTile Dataset
Nr. | Train & validation Augmentation | Test Augmentation |
---|---|---|
1 | Color Jitter, Salt & Pepper Noise | Flip Image, Transpose Image |
2 | Random Perspective, Flip Image | Salt & Pepper Noise, Retinex |
3 | Retinex, MLS | Salt & Pepper Noise, Random Perspective |
4 | Transpose Image, Random Perspective | MLS, Retinex |
5 | Color Jitter, Retinex, Salt & Pepper Noise | MLS, Flip Image |
6 | MLS | Retinex, Salt & Pepper Noise |
7 | Retinex, Color Jitter, MLS | Flip Image, Transpose Image |
8 | Random Perspective | MLS, Flip Image |
9 | Transpose Image | Random Perspective, Flip Image |
10 | Salt & Pepper Noise, Flip Image, Random Perspective, Retinex | MLS, Transpose Image |
Pipeline | Inception v3 | ResNet-50 | Mean | ||||
---|---|---|---|---|---|---|---|
Last layer | 2nd Last layer | 3rd Last layer | Last layer | 2nd Last layer | 3rd Last layer | ||
1 | −0.42134 | −0.29361 | −0.17805 | −0.908 | −0.92141 | −0.99612 | −0.61976 ± 0.3308 |
2 | −0.87905 | −0.77159 | −0.75817 | −0.98297 | −0.91635 | −0.98849 | −0.88277 ± 0.09151 |
3 | −0.99165 | −0.86321 | −0.89364 | −0.99371 | −0.95432 | −0.97724 | −0.94563 ± 0.05 |
4 | −0.07302 | −0.64191 | −0.95817 | 0.86934 | −0.99643 | −0.63085 | −0.40517 ± 0.64512 |
5 | −0.99206 | −0.99545 | −0.99109 | −0.99631 | −0.99184 | −0.99959 | −0.99439 ± 0.00302 |
6 | −0.27443 | −0.28848 | −0.41971 | −0.85509 | −0.91592 | −0.90101 | −0.60911 ± 0.28593 |
7 | −0.99722 | −0.99293 | −0.9993 | −0.40914 | −0.5799 | −0.98809 | −0.82776 ± 0.24077 |
8 | −0.98136 | −0.87428 | −0.90671 | −0.71458 | −0.83115 | −0.99136 | −0.88324 ± 0.09408 |
9 | −0.98295 | −0.93676 | −0.82706 | −0.94623 | −0.96887 | −0.9424 | −0.93404 ± 0.05046 |
10 | −0.98475 | −0.97233 | 0.05444 | −0.98154 | −0.99635 | −0.9711 | −0.8086 ± 0.38606 |
−0.7578 ± 0.3574 | −0.7631 ± 0.2715 | −0.6877 ± 0.3741 | −0.6918 ± 0.5782 | −0.9073 ± 0.1258 | −0.9386 ± 0.1123 |
6.3.2 TIG5083 Dataset
Nr. | Train & validation Augmentation | Test Augmentation |
---|---|---|
1 | Add Brightness | Affine Transfomer, Perspective Transformation |
2 | Add Brightness, Gaussian Noise | Transpose Image, Affine Transfomer |
3 | Transpose Image, Perspective Transformation, Affine Transfomer | Flip Image, Gaussian Noise |
4 | Gaussian Noise, Perspective Transformation | Transpose Image, Flip Image |
5 | Transpose Image, Affine Transfomer, Add Brightness | Gaussian Noise, Flip Image |
6 | Transpose Image, Add Brightness | |
7 | Gaussian Noise, Transpose Image | Perspective Transformation, Flip Image |
8 | Gaussian Noise | Add Brightness, Affine Transfomer |
9 | Transpose Image, Add Brightness, Flip Image | Perspective Transformation, Gaussian Noise |
10. | Perspective Transformation, Gaussian Noise | Flip Image, Transpose Image |
Pipeline | Inception v3 | ResNet-50 | Mean | ||||
---|---|---|---|---|---|---|---|
Last layer | 2nd Last layer | 3rd Last layer | Last layer | 2nd Last layer | 3rd Last layer | ||
1 | −0.81792 | −0.81945 | −0.82353 | −0.82422 | −0.85945 | −0.83561 | −0.83003 ± 0.01433 |
2 | −0.95836 | −0.95362 | −0.96833 | −0.99884 | −0.9493 | −0.93576 | −0.9607 ± 0.01966 |
3 | −0.92238 | −0.90818 | −0.24479 | −0.91736 | −0.9626 | −0.90916 | −0.81074 ± 0.25376 |
4 | −0.61701 | −0.84784 | −0.78521 | −0.7663 | −0.8051 | −0.85062 | −0.77868 ± 0.07852 |
5 | −0.99923 | −0.96855 | −0.93786 | −0.99872 | −0.98831 | −0.98185 | −0.97909 ± 0.02119 |
6 | −0.76129 | −0.76871 | −0.8904 | −0.87209 | −0.82126 | −0.8541 | −0.82798 ± 0.04921 |
7 | −0.98311 | −0.98905 | −0.97248 | −0.47366 | −0.33301 | −0.36318 | −0.68575 ± 0.29891 |
8 | −0.9528 | −0.96702 | −0.93089 | −0.95038 | −0.99583 | −0.96655 | −0.96058 ± 0.01985 |
9 | −0.80877 | −0.87399 | −0.75693 | −0.7757 | −0.78879 | −0.83407 | −0.80638 ± 0.03882 |
10 | −0.77332 | −0.98553 | −0.73991 | −0.95172 | −0.90796 | −0.94447 | −0.88382 ± 0.09322 |
−0.8594 ± 0.1236 | −0.9082 ± 0.0773 | −0.805 ± 0.2152 | −0.8529 ± 0.1579 | −0.8412 ± 0.1942 | −0.8475 ± 0.1789 |